Disuguaglianza Swisstst06

Polinomi, disuguaglianze, numeri complessi, ...
Rispondi
Simo_the_wolf
Moderatore
Messaggi: 1053
Iscritto il: 01 gen 1970, 01:00
Località: Pescara

Disuguaglianza Swisstst06

Messaggio da Simo_the_wolf »

Siano dati $ a,b,c \in R^+ $ tali che $ \frac 1a + \frac 1b + \frac 1c =1 $. Si dimostri che:

$ \sqrt{ab+c} + \sqrt { bc+a } + \sqrt{ ac+ b} \geq \sqrt{abc} +\sqrt{a} + \sqrt{b} + \sqrt{c} $
Avatar utente
Boll
Messaggi: 1076
Iscritto il: 01 gen 1970, 01:00
Località: Piacenza

Re: Disuguaglianza Swisstst06

Messaggio da Boll »

Simo_the_wolf ha scritto:Siano dati $ $a,b,c \in R^+ $ tali che $ $\frac 1a + \frac 1b + \frac 1c =1 $. Si dimostri che:

$ $ \sqrt{ab+c} + \sqrt { bc+a } + \sqrt{ ac+ b} \geq \sqrt{abc} +\sqrt{a} + \sqrt{b} + \sqrt{c} $
Le somme sono da intendersi cicliche.
Senza perdere in nulla poniamo $ $ x^2=\frac{1}{a} $ e cicliche con $ $x,y,z \in R^+ $. Quindi la nostra condizione diviene $ x^2+y^2+z^2=1 $

La tesi diventa

$ $ \sum \sqrt{\frac{1}{x^2y^2}+\frac{1}{z^2}}\ge \frac{1}{xyz}+\sum \frac{1}{x} $

moltiplicando per $ xyz $ coimplica


$ $ \sum \sqrt{x^2y^2+z^2}\ge 1+\sum xy $
$ $ \sum \sqrt{x^2y^2+1-x^2-y^2}\ge 1+\sum xy $
$ $ \sum \sqrt{(1-y^2)(1-x^2)}\ge 1+\sum xy $
$ $ \sum \sqrt{(x^2+z^2)(y^2+z^2)}\ge 1+\sum xy $

quindi l'ultima disuguaglianza, essendo i passaggi tutti invertibili, è la nostra tesi.

Ora, per CS avremo

$ $ \sqrt{(x^2+z^2)(y^2+z^2)}\ge xy+z^2 $
passando alle somme
$ $ \sum \sqrt{(x^2+z^2)(y^2+z^2)}\ge \sum xy+\sum x^2 $ ovvero
$ $ \sum \sqrt{(x^2+z^2)(y^2+z^2)}\ge \sum xy+1 $

che è la tesi.

Al solito se qualcosa non fosse chiaro, chiedete.
"Ma devo prendere una n-upla qualsiasi o una n-upla arbitraria?" (Lui)
piever
Messaggi: 645
Iscritto il: 18 feb 2006, 13:15
Località: Roma
Contatta:

Messaggio da piever »

uhm, giusto per voler fare gli alternativi:

riscrivo la tesi

$ \displaystyle\sum_{cyc} \sqrt{a}+\frac{\sqrt{abc}}{a}\leq \sum_{cyc} \sqrt{bc+a} $

Ora dimostriamo che:

$ \displaystyle\sqrt{a}+\frac{\sqrt{abc}}{a}\leq \sqrt{bc+a} $

elevando al quadrato, il nostro enunciato equivale a:

$ \displaystyle a+\frac{bc}{a}+2\sqrt{bc}\leq bc+a $

$ \displaystyle 2\sqrt{bc}\leq bc(1-\frac{1}{a}) $

$ \displaystyle 2\sqrt{bc}\leq bc(\frac{1}{b}+\frac{1}{c}) $

$ \displaystyle 2\sqrt{bc}\leq c+b $

$ \displaystyle 0\leq (\sqrt{c}-\sqrt{b})^2 $
"Sei la Barbara della situazione!" (Tap)
Rispondi