Tecnico ma facile

Rette, triangoli, cerchi, poliedri, ...
Rispondi
Mattysal
Messaggi: 116
Iscritto il: 06 feb 2018, 14:54
Località: Oria (BR)

Tecnico ma facile

Messaggio da Mattysal » 12 nov 2019, 22:29

Sia [math] un triangolo acutangolo e sia [math] l’ortocentro. Detto [math] il punto medio di [math], sia [math] il punto medio di [math] e sia [math] il circocentro del triangolo [math].
Dimostrare che [math] è un parallelogramma.

matpro98
Messaggi: 458
Iscritto il: 22 feb 2014, 18:42

Re: Tecnico ma facile

Messaggio da matpro98 » 12 nov 2019, 23:38

Da quando in qua fai anche G tu? :lol:

Mattysal
Messaggi: 116
Iscritto il: 06 feb 2018, 14:54
Località: Oria (BR)

Re: Tecnico ma facile

Messaggio da Mattysal » 13 nov 2019, 10:55

matpro98 ha scritto:
12 nov 2019, 23:38
Da quando in qua fai anche G tu? :lol:
Dopo la tua lezione di Febbraio non faccio quasi nient’altro :lol:

Carlo42
Messaggi: 19
Iscritto il: 23 gen 2019, 22:17

Re: Tecnico ma facile

Messaggio da Carlo42 » 13 nov 2019, 23:01

Sia [math] il centro della circonferenza di Feuerbach di [math]. Sappiamo che [math] è punto medio di [math]; inoltre, abbiamo che, detto [math] il piede dell'altezza uscente da [math], [math] e [math] appartengono alla circonferenza di Feuerbach di [math] e [math], da cui segue che [math] e [math] sono diametralmente opposti e che [math] è il loro punto medio. Osserviamo ora il quadrilatero [math]: le due diagonali [math] e [math] si bisecano, e dunque il quadrilatero è un parallelogramma.
Ma [math] perché [math] è punto medio di [math] e [math] per quanto dimostrato in precedenza. Dunque [math] e inoltre [math] e [math] sono parallele perché sono rispettivamente asse e altezza di [math]. Quindi [math] ha due lati paralleli e congruenti, da cui la tesi.

matpro98
Messaggi: 458
Iscritto il: 22 feb 2014, 18:42

Re: Tecnico ma facile

Messaggio da matpro98 » 13 nov 2019, 23:11

Da quello che dici nella frase "osserviamo ora ..." credo tu abbia sbagliato a considerare il punto $O$, non è quello standard

Carlo42
Messaggi: 19
Iscritto il: 23 gen 2019, 22:17

Re: Tecnico ma facile

Messaggio da Carlo42 » 13 nov 2019, 23:20

Hai ragione, la forza dell'abitudine... :oops:
Ora provo il vero problema allora

Carlo42
Messaggi: 19
Iscritto il: 23 gen 2019, 22:17

Re: Tecnico ma facile

Messaggio da Carlo42 » 14 nov 2019, 00:10

Ci riprovo...
Poiché [math] appartiene all'asse di [math], [math] è perpendicolare a [math] e dunque parallela ad [math]. Quindi ci basta mostrare che [math].
Per quanto detto nel post precedente, abbiamo che, detto [math] il circocentro di [math], [math]. Dimostreremo dunque che [math]. Per angle-chasing (qui salto un po' di conti) abbiamo [math] e dunque, poiché [math] è perpendicolare a [math], [math]. Ma sempre per angle-chasing si ottiene [math] e dunque [math] e [math] sono simmetrici rispetto a [math] e in particolare [math], da cui la tesi.

Rispondi