Sant'Anna Pisa

Conteggi, probabilità, invarianti, logica, matematizzazione, ...
Rispondi
Roberto_Cella
Messaggi: 4
Iscritto il: 23 ago 2019, 12:56

Sant'Anna Pisa

Messaggio da Roberto_Cella » 30 ago 2019, 18:51

Considera una circonferenza e nove punti su di essa. Unendo ogni coppia di punti si formano 36 corde. Quanti punti, interni alla circonferenza, si formano dall'intersezione di tutte le corde?( In ogni punto si intersecano solo due corde)

sphyr
Messaggi: 9
Iscritto il: 10 ago 2019, 13:36

Re: Sant'Anna Pisa

Messaggio da sphyr » 30 ago 2019, 21:47

Se in ogni punto si intersecano solo due corde, vuol dire che devi contare tutte le possibili combinazioni di 36 elementi "a due a due"... Ma così facendo conti ogni coppia due volte (prima (A,B), poi (B,A)) dunque devi dividere il risultato per due. In simboli, con [math] il numero di punti:

[math]
A meno che non ci sia qualche sofisticatezza geometrica che mi sfugge.

Ilgatto
Messaggi: 38
Iscritto il: 24 ott 2017, 16:36

Re: Sant'Anna Pisa

Messaggio da Ilgatto » 30 ago 2019, 22:49

E chi ti dice che due corde si incontrano per forza? Pensa a due lati non consecutivi: non si incontrano e dunque non hanno punti in comune, eppure tu non escludi questo caso mentre conti le coppie.

Vorrei farti notare inoltre che $\binom{36}{2}$ è già il numero di coppie non ordinate di elementi scelti tra i $36$ possibili (cioè consideri già che $(a,b)$ e $(b,a)$ sono la stessa coppia). Infatti metti anche un $2!$ a denominatore che è proprio il numero di permutazioni degli elementi di una coppia

Se volessi un hint:
Testo nascosto:
Guarda le diagonali del tuo ennagono (perchè non i lati?), riesci a trovare quanti punti interni giacciono su una diagonale data?

Rispondi