Esperimenti con il LaTeX

Cos'è il LaTeX e come usarlo al meglio.
Avatar utente
dimpim
Messaggi: 300
Iscritto il: 01 gen 1970, 01:00

Messaggio da dimpim » 19 mag 2006, 15:04

$ \displaystyle C_\gamma(\overrightarrow{B}) = - \frac{d\Phi(\overrightarrow{B})}{dt} $

Maxwell era un dio...

Qualcuno di voi sa come si indica in LaTeX la circuitazione, utilizzando quella C fatta tutta a ghirigori che si vede in certi testi? Grazie in anticipo.

hexen
Messaggi: 237
Iscritto il: 01 gen 1970, 01:00
Località: polonia
Contatta:

Messaggio da hexen » 19 mag 2006, 18:15

$ $\lim_{x \rightarrow +\infty} \int_a^x e^{-u^2} du$ $
[url=http://davidpet.interfree.it/renato.html:3r47vsho]Stamattina hanno suonato alla porta. Sono andato ad aprire e...[/url:3r47vsho]
[url=http://davidpet.interfree.it/jabber/index.html:3r47vsho]Guida introduttiva a Jabber[/url:3r47vsho]

TADW_Elessar
Messaggi: 145
Iscritto il: 21 mag 2006, 00:18
Contatta:

Messaggio da TADW_Elessar » 21 mag 2006, 00:30

$ $11^{n+2}+12^{2n+1}=133a $ con $ $a, n \in \mathbb{N} $

Vediamo un po' come funziona questo LaTeX :)

Avatar utente
Ani-sama
Messaggi: 418
Iscritto il: 19 feb 2006, 21:38
Località: Hasselt
Contatta:

Messaggio da Ani-sama » 26 mag 2006, 17:41

$ \textrm{Quanto lunghe possono essere le frasi? In teoria uno può così} $$ \textrm{ scrivere usando solo il \LaTeX\ anche per il testo.} $$ \textrm{ Cosa che, peraltro\,\ldots\ è una figata!} $$ \textrm{ Chissà se va a capo oppure no.} $$ \textrm{ Sì, ci va!!!} $
...

Avatar utente
Ani-sama
Messaggi: 418
Iscritto il: 19 feb 2006, 21:38
Località: Hasselt
Contatta:

Messaggio da Ani-sama » 08 giu 2006, 19:22

C'è una cosa che non molti sanno... e continuano a fare dei giri strani per ottenerla quando c'è un comando che la fa subito. Mi riferisco al MODULO...

Il comando

Codice: Seleziona tutto

\pmod

dà, per esempio:

$ $x^2 \equiv 1 \pmod 3$ $

senza dover impastarsi con parentesi e spazi... :)
...

Poeth
Messaggi: 37
Iscritto il: 17 giu 2006, 14:46

Messaggio da Poeth » 17 giu 2006, 15:25

come si fa il circa uguale?


Ah ho trovato... e vi posto questa cosa inutile che ho appena ricavato :D
$ \pi \simeq 10*(\sqrt{2} - 1) -1 $
è esatta al millesimo :O
Chissà se ha una qualche interpretazione profonda? =P

Avatar utente
frengo
Messaggi: 223
Iscritto il: 01 gen 1970, 01:00

Messaggio da frengo » 21 giu 2006, 18:44

devo dimostrare che $ (a+b)^n=\sum\limits_{k=0}^{n}\binom{n}{k}a^kb^{n-k} $

per induzione:

per n=1 è ovvio:
$ (a+b)^1=a+b=\sum\limits_{k=0}^{1}\binom{1}{k}a^kb^{1-k}=\binom{1}{0}b+\binom{1}{1}a $

adesso supponiamo che per n=x funziona
e lo dimostro per n=x+1

$ (a+b)^x=\sum\limits_{k=0}^{x}\binom{x}{k}a^kb^{x-k} $

$ (a+b)^{x+1}=a(a+b)^x+b(a+b)^x=a\sum\limits_{k=0}^{x}\binom{x}{k}a^kb^{x-k}+ $$ b\sum\limits_{k=0}^{x}\binom{x}{k}a^kb^{x-k} $$ =\sum\limits_{k=0}^{x}\binom{x}{k}a^{k+1}b^{x-k}+ $$ \sum\limits_{k=0}^{x}\binom{x}{k}a^kb^{x-k+1}= $
$ =\sum\limits_{k=-1}^{x-1}\binom{x}{k+1}a^{k}b^{x-k+1}+ $$ \sum\limits_{k=0}^{x}\binom{x}{k}a^kb^{x-k+1}= $$ \sum\limits_{k=0}^{x+1}\left(\binom{x}{k}+\binom{x}{k+1}\right)a^kb^{x+1-k} $

Avatar utente
Nomen
Messaggi: 68
Iscritto il: 01 gen 1970, 01:00

Messaggio da Nomen » 22 giu 2006, 07:52

$ $\int_a^x$ $
$ \int_1^0 $
$ $\int_1^0$ $

TADW_Elessar
Messaggi: 145
Iscritto il: 21 mag 2006, 00:18
Contatta:

Messaggio da TADW_Elessar » 18 lug 2006, 22:00

$ $ \frac 1 {\sqrt{1- \frac {v^2} {c^2}}} $

Avatar utente
Ponnamperuma
Messaggi: 411
Iscritto il: 10 lug 2006, 11:47
Località: Torino

Messaggio da Ponnamperuma » 19 lug 2006, 00:14

Colgo l'occasione per ricordare quanto già segnalato da... dimpim credo... sul comando \displaystyle..., molto utile per rendere più leggibili le frazioni...

L'ultima formula relativistica dovrebbe diventare...

$ \displaystyle \frac 1 {\sqrt {1-\frac {v^2}{c^2}}} $

Il codice sorgente è
\displaystyle \frac 1 {\sqrt {1-\frac {v^2}{c^2}}}

MiScappaLaCacca
Messaggi: 154
Iscritto il: 09 ago 2006, 23:06
Contatta:

Messaggio da MiScappaLaCacca » 18 ago 2006, 23:33

$ 1+1=2 $
[url=http://www.forzacomo.it/][img]http://www.forzacomo.it/images/banner.jpg[/img][/url]

emcuno
Messaggi: 35
Iscritto il: 01 gen 1970, 01:00

Messaggio da emcuno » 19 ago 2006, 20:12

Sapete dirmi qual è il comando per il simbolo di non appartenenza, cioè la $ \in $ sbarrata?

Avatar utente
edriv
Messaggi: 1638
Iscritto il: 16 feb 2006, 19:47
Località: Gradisca d'Isonzo
Contatta:

Messaggio da edriv » 19 ago 2006, 22:31

\not \in

$ A \not \in A $

emcuno
Messaggi: 35
Iscritto il: 01 gen 1970, 01:00

Messaggio da emcuno » 20 ago 2006, 08:39

Grazie!!!

Simo_the_wolf
Moderatore
Messaggi: 1024
Iscritto il: 01 gen 1970, 01:00
Località: Pescara

Messaggio da Simo_the_wolf » 27 ago 2006, 14:58

$ \sqrt{5n^2 + 4} \in \mathbb{N}_0 \Longleftrightarrow \exists k \in \mathbb{N} | \sqrt{5n^2 + 4} = \phi ^{2k } + \varphi ^ { 2k} $

$ \sqrt{5n^2 - 4} \in \mathbb{N}_0 \Longleftrightarrow \exists k \in \mathbb{N} | \sqrt{5n^2 - 4} = \phi ^{2k+1 } + \varphi ^ { 2k+1} $

N.B.: $ \phi \neq \varphi $ e $ P(x)=x^2-x-1 \Longrightarrow P(\phi)=0 \wedge P(\varphi )=0 $

Rispondi