Infiniti n > 0 t.c. tau(nx) = x non ammetta soluzioni

Numeri interi, razionali, divisibilità, equazioni diofantee, ...
Rispondi
Avatar utente
HiTLeuLeR
Messaggi: 1874
Iscritto il: 01 gen 1970, 01:00
Località: Reggio di Calabria

Infiniti n > 0 t.c. tau(nx) = x non ammetta soluzioni

Messaggio da HiTLeuLeR »

Well, a new problem has come (IMO shortlist del 2004). Davvero molto bello... :mrgreen:

Per ogni intero $ n > 0 $, sia $ \tau(n) $ il numero dei divisori di $ n $. Mostrare che esistono infiniti $ n\in\mathbb{Z}^+ $ tali che l'equazione $ \tau(nx) = x $ non ammette soluzioni in interi positivi.
Avatar utente
HumanTorch
Messaggi: 281
Iscritto il: 01 gen 1970, 01:00
Località: Tricase

Messaggio da HumanTorch »

Sia $ p\in \mathfrak{P} $. Possiamo scartare gli x dispari perchè basta aggiungerci n=p
In generale la tesi è vera perchè basta prendere $ p^{2^z-1} $ indefinitamente grande per scartare tutti gli x tali che $ 2^j||x $( si scrive così se $ 2^j|x $ ma $ 2^j $ non divide x?), j<z
Avatar utente
HiTLeuLeR
Messaggi: 1874
Iscritto il: 01 gen 1970, 01:00
Località: Reggio di Calabria

Messaggio da HiTLeuLeR »

HumanTorch ha scritto:Sia $ p\in \mathfrak{P} $. Possiamo scartare gli x dispari perchè basta aggiungerci n=p
E questo che diamine significherebbe?! Ah, che pessima attitudine, quella di chiedere spiegazioni, là dove il discorso non è chiaro! :wink: Aiutami a capire quel che intendi, ché poi ragioniamo pure sul resto.
Avatar utente
HumanTorch
Messaggi: 281
Iscritto il: 01 gen 1970, 01:00
Località: Tricase

Messaggio da HumanTorch »

Niente, ho risposto alla domanda come se x fosse prefissato. Vedo se posso aggiustarlo
Avatar utente
HiTLeuLeR
Messaggi: 1874
Iscritto il: 01 gen 1970, 01:00
Località: Reggio di Calabria

Messaggio da HiTLeuLeR »

Ecco, il mio sospetto era proprio quello... :wink:
Igor
Messaggi: 108
Iscritto il: 01 gen 1970, 01:00

Messaggio da Igor »

Dimostriamo che tutti gli $ n $ della forma $ p^{p-1} $, con $ p $ primo maggiore di 3 verificano la tesi.

Distinguiamo due casi:

A)$ x $ è coprimo con $ p $.

L'equazione diventa allora:

$ \sigma_0(p^{p-1}*x)=x $

$ \sigma_0(p^{p-1})*\sigma_0(x)=x $

$ p*\sigma_0(x)=x $ assurdo poichè abbiamo posto $ (p,x)=1 $.

B)$ (x,p)>1 $

Possiamo allora porre $ x=p^s*\omega $, con $ p,\omega\in N $, $ s\geq 1 $, $ (p,\omega)=1 $.

L'equazione diventa

$ \sigma_0(p^{p+s-1}*\omega)=\omega*p^s $

$ (p+s)*\sigma_0(\omega)=\omega*p^s $

(1) $ \displaystyle \frac{\sigma_0(\omega)}{\omega}=\frac{p^s}{p+s}\displaystyle $

Ammettiamo ora che sia $ s\geq 2 $.

Allora il membro destro della (1) ha valore minimo uguale a 1,per $ s=2 $ e $ p=2 $.

Il membro sinistro ha massimo uguale a $ 1 $ per $ \omega=2 $.Abbiamo però posto $ (\omega,p)=1 $.Quindi la (1),per $ s\geq 2 $ non ha soluzioni.Ammettiamo dunque $ s=1 $.La (1) diventa

$ \displaystyle \frac{\sigma_0(\omega)}{\omega}=\frac{p}{p+1}\displaystyle $

Il massimo per il mebro sinistro è nuovamente $ 1 $ per $ \omega=2 $.Tuttavia $ \frac{p}{p+1}=1 $ non è verificato per nessun $ p $.Troviamo dunque il massimo per il membro sinistro escludendo il valore $ \omega=2 $.Si trova facilmente che il massimo è $ \frac{3}{4} $ per $ \omega=4 $.Se infatti $ \omega $ fosse della forma $ 2*p $,il valore massimo sarebbe $ \frac{2}{3} $ per $ \omega=6 $ ed abbiamo che $ 3/4>2/3 $.

Per $ p>3 $ si ha però

$ \displaystyle\frac{p}{p+1}>\frac{3}{3+1}=\frac{3}{4}\displaystyle $.

Dunque la (1) non ha soluzione neanche se $ s=1 $.

Dunque, se $ n $ è della forma $ p^{p-1} $, con $ p $ primo >3,l'equazione $ \sigma_0(nx)=x $ non ha soluzioni.Poichè i numeri primi sono infiniti,abbiamo anche infiniti $ n $.
Avatar utente
HiTLeuLeR
Messaggi: 1874
Iscritto il: 01 gen 1970, 01:00
Località: Reggio di Calabria

Messaggio da HiTLeuLeR »

Sì, Igor, assolutamente impeccabile. Son certo che in molti te l'avran già detto, ma lascia che anch'io mi aggiunga a loro: BRAVO! :D
Rispondi