Messaggio
da elianto84 » 07 mar 2018, 00:35
Soluzione un po' tecnica: $p(x)=x^4+1$ non è esattamente un polinomio a caso, è l'ottavo polinomio ciclotomico $\Phi_8(x)$. Esso è palesemente un quadrato in $\mathbb{F}_2[x]$. Se consideriamo un primo $p$ dispari, il grado del campo di spezzamento di $\Phi_8(x)$ su $\mathbb{F}_p$ è dato dal minimo numero naturale $k$ tale per cui $8\mid (p^k-1)$, in quanto le radici di $\Phi_8(x)$ sono le radici primitive ottave dell'unità e la parte moltiplicativa di un campo finito è un gruppo ciclico. D'altra parte se $p\equiv 1\pmod{8}$ si ha $k=1$, per cui $\Phi_8(x)$ si spezza in fattori lineari, altrimenti $k=2$, e $\Phi_8(x)$ si spezza come prodotto di due irriducibili quadratici. Comunque vada $k=4$ (corrispondente al caso in cui $p(x)$ risulta irriducibile su $\mathbb{F}_p$) non ha mai luogo.
Potete provare a semplificare questa dimostrazione considerando una scrittura esplicita delle radici complesse di $\Phi_8(x)$ e il fatto che, per ogni primo $p$ dispari, almeno un numero tra $-1,2$ e $-2$ è un residuo quadratico $\!\!\pmod{p}$, visto che il simbolo di Legendre è moltiplicativo.