Ancora un classico

Polinomi, disuguaglianze, numeri complessi, ...
Rispondi
nuoveolimpiadi1999
Messaggi: 122
Iscritto il: 31 mar 2015, 13:30

Ancora un classico

Messaggio da nuoveolimpiadi1999 » 21 giu 2017, 16:29

Siano $a,b,c$ numeri reali positivi, tali che: $$a+b+c \geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}.$$

Dimostrare che:
\[a+b+c \geq \frac{3}{abc}. \]

Domanda bonus:
Si deve avere necessariamente che $abc\geq1$?

Vinci
Messaggi: 149
Iscritto il: 30 gen 2015, 18:38

Re: Ancora un classico

Messaggio da Vinci » 25 giu 2017, 16:09

Non ho capito una cosa, ma "$abc\ge 1$" è nelle ipotesi?

Talete
Messaggi: 666
Iscritto il: 05 giu 2014, 13:47
Località: Riva del Garda

Re: Ancora un classico

Messaggio da Talete » 26 giu 2017, 11:40

No, è tipo una seconda tesi. "Se $a+b+c\ge 1/a+1/b+1/c$, è necessariamente vero che $abc\ge1$?"
"Sei il Ballini della situazione" -- Nikkio
"Meriti la menzione di sdegno" -- troppa gente
"Sei arrivato 69esimo? Ottima posizione!" -- Andrea M. (che non è Andrea Monti, come certa gente pensa)
"Se ti interessa stanno inventando le baricentriche elettroniche, che dovrebbero aiutare a smettere..." -- Bernardo

Vinci
Messaggi: 149
Iscritto il: 30 gen 2015, 18:38

Re: Ancora un classico

Messaggio da Vinci » 29 giu 2017, 13:01

:roll: Qualche hint per me?

Luke99
Messaggi: 12
Iscritto il: 12 giu 2015, 13:11

Re: Ancora un classico

Messaggio da Luke99 » 29 giu 2017, 20:44

Il fatto che $ a+b+c\geq 1/a +1/b +1/c $ é sempre vero con $ a,b,c $ reali positivi per la disuguaglianza AM$ \geq $ HM.
Per dimostrare che $ a+b+c\geq \frac{3}{abc} $ notiamo subito che se facciamo tendere $ a,b,c $ a 0 la disuguaglianza non regge più. Ora moltiplicando tutto per abc otteniamo $ a^2bc +ab^2c +abc^2\geq 3 $ ma sappiamo che per AM, GM $ a^2bc+ab^2c+abc^2 \geq 3abc×{abc}^{1/3} $ ma $ abc ×{abc}^{1/3} $ é maggiore o uguale a 1 solo con $ abc\geq 1 $

Veritasium
Messaggi: 6
Iscritto il: 30 ago 2016, 11:38

Re: Ancora un classico

Messaggio da Veritasium » 29 giu 2017, 21:07

Luke99 ha scritto:
29 giu 2017, 20:44
Il fatto che $ a+b+c\geq 1/a +1/b +1/c $ é sempre vero con $ a,b,c $ reali positivi per la disuguaglianza AM$ \geq $ HM.
$ (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}) $ ? :lol:

Avatar utente
Lasker
Messaggi: 331
Iscritto il: 02 mag 2013, 20:47
Località: Udine

Re: Ancora un classico

Messaggio da Lasker » 29 giu 2017, 21:40

E anche, non è vero che $abc\geq 1$ (anche perché sennò sarebbe stato un grosso indizio su come fare la dimostrazione)
Testo nascosto:
$(8, 1/3, 1/3)$
"Una funzione generatrice è una corda da bucato usata per appendervi una successione numerica per metterla in mostra" (Herbert Wilf)

"La matematica è la regina delle scienze e la teoria dei numeri è la regina della matematica" (Carl Friedrich Gauss)

Sensibilizzazione all'uso delle potenti Coordinate Cartesiane, possano seppellire per sempre le orride baricentriche corruttrici dei giovani: cur enim scribere tre numeri quando se ne abbisogna di due?

PRIMA FILA TUTTI SBIRRI!

Luke99
Messaggi: 12
Iscritto il: 12 giu 2015, 13:11

Re: Ancora un classico

Messaggio da Luke99 » 29 giu 2017, 23:28

Si tutte osservazioni giuste non sono bravo a fare le cose di fretta hahah ci riprovo domani magari

Emarossi
Messaggi: 11
Iscritto il: 01 giu 2017, 14:51

Re: Ancora un classico

Messaggio da Emarossi » 06 ago 2017, 10:29

Io ho provato così:
applico la media armonica ai termini $\frac{1}{a},\frac{1}{b},\frac{1}{c}$ ottenendo che
[math]
Poi applicando la media geometrica ad $a,b,c$ ottengo che:
[math]
Confrontando il risultato con la tesi si ottiene che $\sqrt[3]{abc}\leq abc$, ovvero che $abc$ deve essere necessariamente maggiore o uguale ad 1.

AlexThirty
Messaggi: 214
Iscritto il: 20 giu 2015, 20:58

Re: Ancora un classico

Messaggio da AlexThirty » 06 ago 2017, 11:04

Emarossi ha scritto:
06 ago 2017, 10:29
Io ho provato così:
applico la media armonica ai termini $\frac{1}{a},\frac{1}{b},\frac{1}{c}$ ottenendo che
[math]
Poi applicando la media geometrica ad $a,b,c$ ottengo che:
[math]
Confrontando il risultato con la tesi si ottiene che $\sqrt[3]{abc}\leq abc$, ovvero che $abc$ deve essere necessariamente maggiore o uguale ad 1.
Controlla la media armonica perché non è proprio così ;)
Un bresciano esportato nel cremonese

-"Dal palazzo di giustizia di Catania o esci con più soldi di prima, o non esci proprio"
-"Baroni uscirebbe con un Win - Win".
Tutti si mettono a ridere, e allora intuisco che non aveva detto "Weed - Win" come avevo capito.

Emarossi
Messaggi: 11
Iscritto il: 01 giu 2017, 14:51

Re: Ancora un classico

Messaggio da Emarossi » 06 ago 2017, 12:37

Ho trovato l'errore
Grazie

Rispondi

Chi c’è in linea

Visitano il forum: Nessuno e 5 ospiti