Only for the elite of Mathematics

Analisi, algebra lineare, topologia, gruppi, anelli, campi, ...
Messaggi: 4
Iscritto il: 23 giu 2017, 19:42

Only for the elite of Mathematics

Messaggio da marcomila99 » 23 giu 2017, 19:44

How do you prove this $\displaystyle z\cot \left(z\right)=1-2\sum _{k=1}^{\infty}\frac{z^2}{k^2\pi ^2-z^2}$ ?

i’ve seen this formula on a document about Bernoulli’s numbers and their relations with Riemann’s zeta function ( corollario 2.5.2) but i really don’t understand why this is true…

Avatar utente
Messaggi: 876
Iscritto il: 24 set 2009, 16:44

Re: Only for the elite of Mathematics

Messaggio da <enigma> » 23 giu 2017, 20:40

I haven't looked at the document you link to, but the standard way to treat this kind of problems is to combine the Cauchy integral formula and the Phragmén–Lindelöf principle to get an appropriate residue theorem for unbounded domains. For this specific identity I believe there also is a more ad hoc technique known as the Herglotz trick.
"Quello lì pubblica come un riccio!" (G.)
"Questo puoi mostrarlo o assumendo abc o assumendo GRH+BSD, vedi tu cos'è meno peggio..." (cit.)