Polinomi Olimpiadi a squadre

Polinomi, disuguaglianze, numeri complessi, ...
Rispondi
LorMath97
Messaggi: 23
Iscritto il: 17 mag 2014, 18:34

Polinomi Olimpiadi a squadre

Messaggio da LorMath97 » 24 set 2014, 21:19

SALVE mi sono iscritto tempo fa ma questo è solo il mio secondo post quindi scusatemi se pubblico così all'improvviso 3 problemi in un post solo....Comunque anche se voi sapete farne uno solo dei tre scrivetemelo per favore perchè io con i polinomi non ci so fare proprio. Grazie in anticipo e scusate ancora.

1 Il polinomio p(x) ha grado maggiore o uguale a 2 ed i suoi coefficienti sono tutti numeri interi . Quale dei seguenti numeri divide certamente p(169) - p(1) ? ? 25-32-36-49-5


2 Delle sirene elencano nel loro dolce canto tutti i polinomi p(x) non nulli a coefficienti interi di grado minore o uguale a 2014 e tali che p(x)^2 - 2 = p(x^2 -2) . Quanti polinomi vengono elencati ?

3 Ellisseo deve calcolare (a+b+c)(b+c+d)(c+d+a)(d+a+b) dove a b c d sono le radici del polinomio x^4 - 2x^3 - 61x^2 + 62x +840
Che numero calcola ?

HCP16
Messaggi: 21
Iscritto il: 23 ago 2014, 18:38

Re: Polinomi Olimpiadi a squadre

Messaggio da HCP16 » 26 set 2014, 22:56

Ciao! Ti rispondo al 3 perché anche io con i polinomi non sono così bravo , spero che sia giusto:
Chiamiamo
$ S=a+b+c+d $
$ P=abcd $
$ Q=ab+ac+ad+bc+cd+bd $
$ R=abc+bcd+cda+dab $
Intanto $ (a+b+c)(b+c+d)(c+d+a)(a+d+b) $ diventa $ (S-a)(S-b)(S-c)(S-d) $ , aprendo i conti abbiamo :
$ abcd-abcS-abdS+abS^2-acdS+acS^2+adS^2-aS^3-bcdS+bcS^2+bdS^2-bS^3+cdS^2-cS^3-dS^3+S^4 $ $=$
$=$ $ S^4-S^3(a+b+c+d)+S^2(ab+ac+ad+bc+cd+bd)-S(abc+bcd+cda+dab)+abcd $ $=$
$=$ $ S^4-S^4+S^2Q-SR+P $ $=$
$=$ $ S^2Q-SR+P $
Dalle relazioni tra le radici si sa che i coefficienti del polinomio sono:
$ x^4-(a+b+c+d)x^3+(ab+ac+ad+bc+cd+bd)x^2-(abc+bcd+cda+dab)x+abcd $ quindi abbiamo:
$ S=2 $
$ Q=-61 $
$ R=-62 $
$ P=840 $
Quindi $ S^2Q-SR+P=2^2(-61)-2(-62)+840=720 $
Spero di non essermi sbagliato :mrgreen:

Avatar utente
Drago96
Messaggi: 1144
Iscritto il: 14 mar 2011, 16:57
Località: Provincia di Torino
Contatta:

Re: Polinomi Olimpiadi a squadre

Messaggio da Drago96 » 26 set 2014, 23:07

Senza fare troppi conti, basta che ti accorgi che ti sta chiedendo $ p (S) $ ;)

P.S: il 2 è abbastana arduo/tecnico, ed è stato postato non troppo tempo fa...
Imagination is more important than knowledge. For knowledge is limited, whereas imagination embraces the entire world, stimulating progress, giving birth to evolution (A. Einstein)

fph
Site Admin
Messaggi: 3662
Iscritto il: 01 gen 1970, 01:00
Località: in giro
Contatta:

Re: Polinomi Olimpiadi a squadre

Messaggio da fph » 26 set 2014, 23:10

Il 2 è abbastanza arduo, è vero, ma "indovinare" la risposta (capire quale dovrebbe essere il numero giusto, senza una dimostrazione) non è ignobilmente difficile dopo averci lavorato su un po'.
--federico
[tex]\frac1{\sqrt2}\bigl(\left|\text{loves me}\right\rangle+\left|\text{loves me not}\right\rangle\bigr)[/tex]

Avatar utente
karlosson_sul_tetto
Messaggi: 1436
Iscritto il: 10 set 2009, 13:21
Località: Napoli

Re: Polinomi Olimpiadi a squadre

Messaggio da karlosson_sul_tetto » 27 set 2014, 00:04

Dato che il primo è stato snobbato:
Per la divisione euclidea tra polinomi e ruffini, $ p(x)=(x-a)q(x)+p(a) $. Ponendo x=b ottengo:
$ (b-a)|(p(b)-p(a) $ (questo vale ovviamente per polinomi a coefficienti interi)
Hai quindi che $168|p(169)-p(1)$, e tra le risposte date non è difficile trovare quella giusta
"Inequality happens"
---
"Chissa se la fanno anche da asporto"

LorMath97
Messaggi: 23
Iscritto il: 17 mag 2014, 18:34

Re: Polinomi Olimpiadi a squadre

Messaggio da LorMath97 » 27 set 2014, 17:26

Vi prego non date niente per scontato, non ho mai fatto esercizi sui polinomi alle olimpiadi e vorrei capire bene
Grazie :)

Avatar utente
Drago96
Messaggi: 1144
Iscritto il: 14 mar 2011, 16:57
Località: Provincia di Torino
Contatta:

Re: Polinomi Olimpiadi a squadre

Messaggio da Drago96 » 27 set 2014, 17:47

Ti consiglio di vedere un A1 del basic, così prendi confidenza con alcuni fatti base sui polinomi...
In particolare se sai che $ p $ è di quarto grado e ha come radici $ a, b, c, d $ allora puoi scrivere $ p (x)=(x-a)(x-b)(x-c)(x-d) $ ;)
Ora, per il 3, se chiami $ S=a+b+c+d $, vedi che ti sta chiedendo proprio $(S-a)(S-b)(S-c)(S-d) $, che in virtù di quello che abbiam detto prima è esattamente $ p (S) $ :D
Infine, se provi ad espandere i conti, vedi che la somma delle radici è il coefficiente del termine di grado subito minore del massimo, cambiato di segno; dunque $ S=2 $ e puoi sostituirlo nell'espressione estesa di $p $
Imagination is more important than knowledge. For knowledge is limited, whereas imagination embraces the entire world, stimulating progress, giving birth to evolution (A. Einstein)

Avatar utente
karlosson_sul_tetto
Messaggi: 1436
Iscritto il: 10 set 2009, 13:21
Località: Napoli

Re: Polinomi Olimpiadi a squadre

Messaggio da karlosson_sul_tetto » 28 set 2014, 14:33

Riscrivo anche io:
hai un polinomio p(x), puoi fare la divisone euclidea per un qualsiasi altro polinomio (ottenendo un quoziente ed un resto che sono polinomi, con coefficienti che dipendono da p(x) e dal divisore: se p(x) e il divisore hanno coefficienti razionali allora i coefficienti del quoziente (che chiamo q(x) e del resto sono razionali, se sono reali saranno reali, se sono interi e il divisore è monico allora saranno interi ecceter); il grado del Polinomio Resto (chiamiamolo r(x)) ha grado minore del divisore (se fosse maggiore o uguale potrei dividere ancora). Se divido p(x) per un polinomio di primo grado (x-a), ottengo:
$ p(x)=(x-a)q(x)+r(x) $
Per quanto detto prima, r(x) ha grado minore di (x-a), quindi è un polinomio di grado 0 (visto che x-a ha grado 1), quindi è una costante; per trovarcela pongo x=a nell'espressione sopra:
$ p(a)=(a-a)q(x)+r(x) $
$ p(a)=r(x) $
Ora la formula diventa
$ p(x)=(x-a)q(x)+p(a) $
che equivale a dire (ponendo x=b per bellezza)
$ p(b)-p(a)=(b-a) q(b) $
Ora se p(x) ha coefficienti interi, a e x sono interi,allora p(a) e p(x) sono interi cosi come la loro differenza. q(x) è intero (perché?) quindi il numero b-a divide p(b)-p(a).

Come Drago ti consiglio di vedere un A1 del senior basic che ha la teoria che ti serve (e non solo) :)
"Inequality happens"
---
"Chissa se la fanno anche da asporto"

Avatar utente
Troleito br00tal
Messaggi: 683
Iscritto il: 16 mag 2012, 22:25

Re: Polinomi Olimpiadi a squadre

Messaggio da Troleito br00tal » 28 set 2014, 15:14

karlosson_sul_tetto ha scritto:e tra le risposte date non è difficile trovare quella giusta
E qual è?

Avatar utente
Drago96
Messaggi: 1144
Iscritto il: 14 mar 2011, 16:57
Località: Provincia di Torino
Contatta:

Re: Polinomi Olimpiadi a squadre

Messaggio da Drago96 » 28 set 2014, 17:50

Ahahah :lol:
Palese che è 42! :P

A parte gli scherzi, hai trasformato un 56 in 5 nel copiare dal testo di archimede al forum...
Imagination is more important than knowledge. For knowledge is limited, whereas imagination embraces the entire world, stimulating progress, giving birth to evolution (A. Einstein)

Rispondi