somma delle cifre di un numero periodico

Numeri interi, razionali, divisibilità, equazioni diofantee, ...
Rispondi
Avatar utente
io.gina93
Messaggi: 386
Iscritto il: 24 apr 2010, 01:29

somma delle cifre di un numero periodico

Messaggio da io.gina93 »

$10^n-1$ è divisibile per 2011 se n=670, quindi si sa che l'espressione decimale di 1/2011 si ripete ogni 670 numeri.
trovare la somma di queste 670 cifre.
Ultima modifica di io.gina93 il 13 mar 2011, 19:20, modificato 2 volte in totale.
sasha™
Messaggi: 328
Iscritto il: 11 mag 2009, 12:58

Re: somma delle cifre di un numero ciclico.

Messaggio da sasha™ »

Non capivo perché non uscisse, quindi, controllando con Wolfram Alpha, direi che non è molto ciclico...
patatone
Messaggi: 160
Iscritto il: 20 gen 2011, 19:25

Re: somma delle cifre di un numero ciclico.

Messaggio da patatone »

guarda che wolfram alpha conferma il periodo di 670, ed effettivamente se ci pensi non può che essere cosi
sasha™
Messaggi: 328
Iscritto il: 11 mag 2009, 12:58

Re: somma delle cifre di un numero ciclico.

Messaggio da sasha™ »

Conferma il periodo di 670. Però prova a fare 2/2011, non ha le stesse cifre...
E poi inizia con tre zeri. Le sue permutazioni cicliche non possono essere i multipli da 1 a 670, visto che ce n'è una che è 1000n. Magari ho capito male io, però...
Avatar utente
io.gina93
Messaggi: 386
Iscritto il: 24 apr 2010, 01:29

Re: somma delle cifre di un numero ciclico.

Messaggio da io.gina93 »

hai ragione... :oops:
non è ciclico..

ho sbagliato a scrivere il testo... :oops: :oops:
scusate..
Avatar utente
Rosinaldo
Messaggi: 306
Iscritto il: 18 nov 2008, 16:13
Località: Bussolino Alto(to)

Re: somma delle cifre di un numero periodico

Messaggio da Rosinaldo »

Iacopone al we del diderot ha dimostrato che la somma è $ S=9/2*T=9/2*670=3015 $ :D
Eh questo?
Questo non va bene...
Morto...
patatone
Messaggi: 160
Iscritto il: 20 gen 2011, 19:25

Re: somma delle cifre di un numero periodico

Messaggio da patatone »

Rosinaldo ha scritto:Iacopone al we del diderot ha dimostrato che la somma è $ S=9/2*T=9/2*670=3015 $ :D
è vero!! :shock:
In effetti se l'ordine (e quindi anche il periodo) è pari questa cosa è assolutamente vera! Tra l'altro una volta visto l'enunciato la dimostrazione non è troppo difficile (si basa tutto sul fatto che se esiste $n$ tale che $10^n\equiv k \pmod p$ allora esiste $m$ tale che $10^m\equiv -k\pmod p$).
Comunque ai miei occhi sembra assolutamente stupefacente

@sasha:scusa ma non ho ancora capito qual era la tua obiezione, e cosa ha di diverso il testo ora rispetto a prima...
Avatar utente
Francutio
Messaggi: 1104
Iscritto il: 17 feb 2008, 08:05
Località: Torino

Re: somma delle cifre di un numero periodico

Messaggio da Francutio »

Rosinaldo ha scritto:Iacopone al we del diderot ha dimostrato che la somma è $ S=9/2*T=9/2*670=3015 $ :D
Non è che mentre io vado a leggermi cosa siano gli ordini moltiplicativi potresti farmi la cortesia di scrivermela questa dimostrazione? Perchè ho provato a farmela spiegare a voce da Fabio (Bioletto) ma ho fallito :lol:
Avatar utente
io.gina93
Messaggi: 386
Iscritto il: 24 apr 2010, 01:29

Re: somma delle cifre di un numero periodico

Messaggio da io.gina93 »

lo sapevo che c'entrava un po' con questo thread! :o
Francutio ha scritto: Non è che mentre io vado a leggermi cosa siano gli ordini moltiplicativi potresti farmi la cortesia di scrivermela questa dimostrazione? Perchè ho provato a farmela spiegare a voce da Fabio (Bioletto) ma ho fallito :lol:
Quoto! :lol:
io ho capito cosa siano gli ordini moltiplicativi, ma non ho ancora capito come si usano! xD
sasha™
Messaggi: 328
Iscritto il: 11 mag 2009, 12:58

Re: somma delle cifre di un numero periodico

Messaggio da sasha™ »

patatone ha scritto:
Rosinaldo ha scritto:Iacopone al we del diderot ha dimostrato che la somma è $ S=9/2*T=9/2*670=3015 $ :D
è vero!! :shock:
In effetti se l'ordine (e quindi anche il periodo) è pari questa cosa è assolutamente vera! Tra l'altro una volta visto l'enunciato la dimostrazione non è troppo difficile (si basa tutto sul fatto che se esiste $n$ tale che $10^n\equiv k \pmod p$ allora esiste $m$ tale che $10^m\equiv -k\pmod p$).
Comunque ai miei occhi sembra assolutamente stupefacente

@sasha:scusa ma non ho ancora capito qual era la tua obiezione, e cosa ha di diverso il testo ora rispetto a prima...
Allora, tu sai che, con $S$ somma delle cifre, $\frac{10^{670}-1}{9}\cdot S$ è la somma dei primi 670 multipli, perché il numero è ciclico, no? Ma questa somma è anche $\frac{670\cdot671}{2}$ volte il nostro numero (chiamiamolo $m$), che sappiamo essere $\frac{10^{670}-1}{2011}$. Li uguagli e scopri che $S$ non è intero, il che è assurdo. Questo perché se il denominatore della frazione fosse $T+1$ si eliderebbe con il numeratore della somma dei primi $T$ numeri, dove $T$ è la lunghezza del periodo, che ci porta a dire $2S=9T$. Ma in questo caso non lo è. Inoltre, il nostro numero presunto ciclico è di $667$ cifre, e il periodo è $670$. Lo dobbiamo considerare avente tre zeri all'inizio, ma in questo caso, spostandoli alla fine si ottiene $1000m$, e $1000 > 670$. Ma le 670 permutazioni cicliche delle cifre di $m$ ci devono dare tutti i primi 670 multipli, ed ecco un altro assurdo.
Elzaralian
Messaggi: 28
Iscritto il: 22 dic 2009, 16:44

Re: somma delle cifre di un numero periodico

Messaggio da Elzaralian »

Scusate l'intrusione... ho provato a visualizzare la pagina con 5 browser diversi ma la dimostrazione finale non riesco proprio a vederla! Capita solo a me? Potreste riscriverla per piacere? Grazie mille!
Rispondi