figure equivalenti e isoperimetriche

La matematica vista sotto altri aspetti...

Moderatore: tutor

Bloccato
dino
Messaggi: 122
Iscritto il: 01 gen 1970, 01:00

Messaggio da dino » 01 gen 1970, 01:33

<BR>sentite, oggi mia sorella mi ha chiesto se due figure con la stessa area e con lo stesso perimetro sono congruenti, io le ho risposto di sì...
<BR>l\'ho dimostrato per i triangoli usando erone ma non so come dimostrarlo per due figure con un numero arbitrario di lati.
<BR>Avete idee per la dimostrazione o un controesempio?
<BR>
<BR>grazie a chi ci penserà
<BR>
<BR>hasta la vista companeros

ma_go
Site Admin
Messaggi: 1906
Iscritto il: 01 gen 1970, 01:00

Messaggio da ma_go » 01 gen 1970, 01:33

così di botta direi che vale anche per i quadrilateri. ma è solo un\'impressione...
<BR>comunque per un eventuale controesempio prova a considerare due pentagoni isoperimetrici e minimizza e massimizza le loro aree... dubito che ti verranno due (infiniti, se consideri più di soli due pentagoni) intervalli non certo disgiunti, e siccome l\'area varia continuamente in funzione delle ampiezze degli angoli... il gioco è fatto (teorema di bolzano?).
<BR>
<BR>[qualche minuto dopo...] a dir la verità dubito che sia falso anche per i quadrilateri, generalmente...<BR><BR>[ Questo Messaggio è stato Modificato da: ma_go il 21-05-2003 20:34 ]

dino
Messaggi: 122
Iscritto il: 01 gen 1970, 01:00

Messaggio da dino » 01 gen 1970, 01:33

per il triangolo (il poligono con meno lati) e la circonferenza (quello con più lati) il lemma vale... sarà un caso? <IMG SRC="images/forum/icons/icon_confused.gif">

Belegrand
Messaggi: 84
Iscritto il: 01 gen 1970, 01:00
Località: Guastalla

Messaggio da Belegrand » 01 gen 1970, 01:33

La circonferenza è un poligono particolare con infiniti lati, in quanto è regolare, mentre una curva qualsiasi, che può essere sempre considerata con infiniti lati, ha area diversa. Basta pensare alle ellissi di uguale perimetro, una \"bombata\" ha area maggiore di una assottiliata (almeno mi sembra).[addsig]
Cogito ergo sum.

publiosulpicio
Messaggi: 774
Iscritto il: 01 gen 1970, 01:00

Messaggio da publiosulpicio » 01 gen 1970, 01:33

Secondo me non è vero: pensate semplicemente a un trapezio retto, fissata l\'area e il perimetro, avete tre variabili indipendenti (le basi e l\'altezza) e due sole equazioni, sicuramente il sistema non sarà determinato...

DD
Messaggi: 644
Iscritto il: 01 gen 1970, 01:00
Località: Pisa, talvolta Torino

Messaggio da DD » 01 gen 1970, 01:33

prendi due triangoli isosceli uguali e attaccali per il lato lungo nei due modi possibili
[img:2sazto6b]http://digilander.iol.it/daniel349/boy_math_md_wht.gif[/img:2sazto6b]

dino
Messaggi: 122
Iscritto il: 01 gen 1970, 01:00

Messaggio da dino » 01 gen 1970, 01:33

è vero, grazie DD.
<BR>però il lemma vale per tutti i poligoni regolari (è abbastanza ovvio, mi sembra), vero?
<BR>
<BR>hasta la vista companeros

afullo
Messaggi: 925
Iscritto il: 01 gen 1970, 01:00
Località: Almese (TO)
Contatta:

Messaggio da afullo » 01 gen 1970, 01:33

per i poligoni regolari non c\'è dubbio ma per quelli irregolari no, prova anche a pensare ad un rombo e ad un deltoide. possono benissimo essere equivalenti e isoperimetrici contemporaneamente ma non certo congruenti
Iscritto all'OliForum dal 19/02/2003, giorno delle selezioni provinciali individuali di quell'anno.

2003 : 9 punti - menzione (193°) | 2004 : 19 - argento (33°) | 2005 : 21 - bronzo (69°) | 2006 : 25 - argento (20°)

Finalista nazionale capitano della squadra dell' ITC B. Pascal di Giaveno (TO) - 2005: 6° | 2006: 8°

Attuale Allenatore (dal 2008/2009) del LS N. Copernico di Torino, del LS G. Ferraris di Torino, e (dal 2011/2012) del LS I. Newton di Chivasso (TO).

miccia
Messaggi: 103
Iscritto il: 01 gen 1970, 01:00
Località: Camerino (prov. di Macerata)

Messaggio da miccia » 01 gen 1970, 01:33

Per il triangolo siamo a posto quindi la (ma forse più che \"la\", è meglio dire \"una certa\") proprietà generale secondo me è equivalente grossomodo alla seguente:
<BR>Preso un poligono di n lati , un poligono di n lati e isnoperimetrico e equivalente ad esso se ha uguali i lati e le diagonali omologhe relative ad un vertice.
<BR>Non so se magari bastano anche un numero diverso di diagonali o delle diagonali disposte altrimenti... <IMG SRC="images/forum/icons/icon_frown.gif">
<image src="http://www.deathmetal.com/images/gaurd289.gif">

Bloccato