Aritmetica

Vuoi proporre i tuoi esercizi? Qui puoi farlo!!

Moderatore: tutor

socrate001
Messaggi: 22
Iscritto il: 01 gen 1970, 01:00
Località: Cosenza

Messaggio da socrate001 » 01 gen 1970, 01:33

1)Dimostrare che se ABCDEF è divisibile per 7 allora anche BCDEFA è divisibile per 7
Socrate

Avatar utente
XT
Messaggi: 695
Iscritto il: 01 gen 1970, 01:00
Località: Piacenza

Messaggio da XT » 01 gen 1970, 01:33

Se non ricordo male non esiste un criterio di divisibilità per 7 vero?
"Signore, (a+b^n)/n=x, dunque Dio esiste!" (L.Euler)

socrate001
Messaggi: 22
Iscritto il: 01 gen 1970, 01:00
Località: Cosenza

Messaggio da socrate001 » 01 gen 1970, 01:33

Il criterio non esiste
Socrate

Azarus
Messaggi: 580
Iscritto il: 01 gen 1970, 01:00
Località: Pisa

Messaggio da Azarus » 01 gen 1970, 01:33

se proprio vogliamo esiste per ogni primo..... <IMG SRC="images/forum/icons/icon_smile.gif"> <IMG SRC="images/forum/icons/icon21.gif">

socrate001
Messaggi: 22
Iscritto il: 01 gen 1970, 01:00
Località: Cosenza

Messaggio da socrate001 » 01 gen 1970, 01:33

...ma non ci può aiutare molto nello stabilire se un numero è divisibile prima che si faccia la divisione
Socrate

lordgauss
Messaggi: 478
Iscritto il: 01 gen 1970, 01:00
Località: Brunswick

Messaggio da lordgauss » 01 gen 1970, 01:33

Socrate, tu che ti ispiri al maestro del dubbio, piano con il sentenziare! Un criterio non troppo complicato di divisibilità per 7 esiste (anzi, ne esistono due versioni) e se proprio vuoi saperla tutta, esso risolve il tuo problema con 2 - due - passaggi.

Azarus
Messaggi: 580
Iscritto il: 01 gen 1970, 01:00
Località: Pisa

Messaggio da Azarus » 01 gen 1970, 01:33

errore ed esmpio correlato:
<BR>
<BR>prendiamo il primo 11 :
<BR>
<BR>se facciamo la somma a segni alterni delle cifre del numero e se il risultato è multiplo di 11 allora il numero è multiplo di 11
<BR>in effetti è facile dimostrarlo e anche trovare criteri analoghi per ogni primo
<BR>
<BR>

Avatar utente
XT
Messaggi: 695
Iscritto il: 01 gen 1970, 01:00
Località: Piacenza

Messaggio da XT » 01 gen 1970, 01:33

Senza tenermi sulle spine quale sarebbe il criterio di divisibilità per 7?
<BR>
<BR>p.s. ancora una volta devo lanciare la mia invettiva ai libri scolastici che tralasciano completamente il criterio di divisibilità per 7 <IMG SRC="images/forum/icons/icon_mad.gif">
"Signore, (a+b^n)/n=x, dunque Dio esiste!" (L.Euler)

lordgauss
Messaggi: 478
Iscritto il: 01 gen 1970, 01:00
Località: Brunswick

Messaggio da lordgauss » 01 gen 1970, 01:33

Possiamo costruirne così uno mod p generico (tranne 2 e 5).
<BR>Anzitutto 10^n(p-1)==1 (p), da ciò la periodicità.
<BR>Si ponga 10^i == r_i, con i che va da 1 a p-1.
<BR>Sia An ... A3 A2 A1 A0 l\'espressione decimale di un numero N.
<BR>Allora N == A0 + r_1*A1 + r_2*A2 + ... (p)
<BR>Basta dunque calcolare l\'espressione al secondo membro.
<BR>Nel caso concreto, ex. p=21, gli r_i sono facilmente determinabili, da cui un criterio quasi agevole (utile per i numeroni).

Davide_Grossi
Messaggi: 187
Iscritto il: 01 gen 1970, 01:00
Località: San Giuliano Milanese

Messaggio da Davide_Grossi » 01 gen 1970, 01:33

Chiedo perdono, ma conosco solo una delle due versioni del criterio di divisibiltà per 7, l\'altra la lascio al sommo Lordgauss.
<BR>
<BR>Si prende il numero, lo si divide nella forma 10a+b, si calcola a-2b e si prende il risultato come nuovo punto di partenza per un altro ciclo. Se alla fine il numero risultante è multiplo di 7, lo è anche quello di partenza, altrimenti no. Siccome mi sono spiegato da cani, a voi un esempio:
<BR>
<BR>198476 --> 19847 - 2*6 = 19835 --> 1983 - 2*5 = 1973 --> 197 - 2*3 = 191
<BR>--> 19 - 2*1 = 17 non divisibile per 7, quindi neanche 198476 è multiplo di 7.
<BR>
<BR>Ciao!
Davide Grossi

Azarus
Messaggi: 580
Iscritto il: 01 gen 1970, 01:00
Località: Pisa

Messaggio da Azarus » 01 gen 1970, 01:33

il metodo per ottenere il criterio te lo ha spiegato lordgauss stesso

Avatar utente
XT
Messaggi: 695
Iscritto il: 01 gen 1970, 01:00
Località: Piacenza

Messaggio da XT » 01 gen 1970, 01:33

Grazie a tutti e due!
"Signore, (a+b^n)/n=x, dunque Dio esiste!" (L.Euler)

socrate001
Messaggi: 22
Iscritto il: 01 gen 1970, 01:00
Località: Cosenza

Messaggio da socrate001 » 01 gen 1970, 01:33

2)Dimostrare che per ogni numero dispari n 2^n+3^n+5^n è divisibile per 10
Socrate

Davide_Grossi
Messaggi: 187
Iscritto il: 01 gen 1970, 01:00
Località: San Giuliano Milanese

Messaggio da Davide_Grossi » 01 gen 1970, 01:33

Risvegliamo i neuroni in vista di domani:
<BR>
<BR>Le potenze di 2 e 3 hanno la cifra delle unità che si ripete ciclicamente con periodo 4. In occasione degli esponenti dispari (in ogni ciclo, poichè questo ha durata pari e non \"spareggia\" le cose) la somma delle unità delle potenze di 2 e 3 è 5, a cui va aggiunta quella della potenza del 5, che è sempre 5, il che dà somma modulo 10 pari a zero.
Davide Grossi

socrate001
Messaggi: 22
Iscritto il: 01 gen 1970, 01:00
Località: Cosenza

Messaggio da socrate001 » 01 gen 1970, 01:33

3)Discutere la verità del seguente enunciato:
<BR>Posto 2^n=t, con n maggiore o =1
<BR>
<BR>2^t + 3^t + 5^t è divisibile per 38
Socrate

Bloccato