Halvig line

Vuoi proporre i tuoi esercizi? Qui puoi farlo!!

Moderatore: tutor

Iulius_Gaius_Caesar
Messaggi: 9
Iscritto il: 01 gen 1970, 01:00
Località: Napoli

Messaggio da Iulius_Gaius_Caesar » 01 gen 1970, 01:33

Ciao ragazzi , ecco qui pronto per voi un (non semplice ) Problema
<BR>\"Siano dati 2m punti neri e 2n punti rossi in un piano a 3 a 3 non allineati.Dimostrare che esiste sempre una retta che divide il piano in due semipiani contenenti ciascuno m punti neri ed n punti rossi\"
<BR>Devo dire che tra panettone e champagne il problema mi è risultato abbastanza indigesto.Se voi avete una qualche idea...

J4Ck202
Messaggi: 196
Iscritto il: 01 gen 1970, 01:00
Località: Pisa

Messaggio da J4Ck202 » 01 gen 1970, 01:33

Immergiamo i nostri punti in un piano cartesiano.
<BR>Raggruppiamo gli m punti con l\'ordinata più grande nel gruppo N1
<BR>e gli m punti con l\'ordinata più piccola nel gruppo N2. Idem per i
<BR>punti rossi, formeremo i gruppi R1 e R2. Chiamiamo
<BR>n1 la più piccola ordinata del gruppo N1, r1 la più piccola ordinata del gruppo R1, n2 la più grande ordinata del gruppo N2 e r2 la più grande ordinata del gruppo R2. Se l\'intersezione degli intervalli (n2;n1) e (r2;r1) non è vuota esisterà sicuramente una retta del tipo y=k che funge da halving line. Per adesso è il migliore aiuto che posso offrire...
<BR>

Avatar utente
XT
Messaggi: 695
Iscritto il: 01 gen 1970, 01:00
Località: Piacenza

Messaggio da XT » 01 gen 1970, 01:33

Da dove viene il nome Halvig Line?
"Signore, (a+b^n)/n=x, dunque Dio esiste!" (L.Euler)

Gauss
Messaggi: 233
Iscritto il: 01 gen 1970, 01:00
Località: Siena
Contatta:

Messaggio da Gauss » 01 gen 1970, 01:33

In effetti non credo sia Halvig, ma halving come ha scritto jack.... letteralmente retta che divide a metà ...
<BR>
<BR>[addsig]
<html>
I can smile... and kill while i smile.
</html>

Avatar utente
XT
Messaggi: 695
Iscritto il: 01 gen 1970, 01:00
Località: Piacenza

Messaggio da XT » 01 gen 1970, 01:33

Grazie, le lingue non sono mio forte...
"Signore, (a+b^n)/n=x, dunque Dio esiste!" (L.Euler)

Iulius_Gaius_Caesar
Messaggi: 9
Iscritto il: 01 gen 1970, 01:00
Località: Napoli

Messaggio da Iulius_Gaius_Caesar » 01 gen 1970, 01:33

Sì era ovviamente \"halving\" e non \"halvig\".Cmq ortografia a parte (non mi piace per niente scrivere al computer ), un\'idea che miè venuta è di trovare un punto (sfruttando l\'unica condizione che i punti non sono allineati) tale che il fascio di rette passante per esso contiene sicuramente una (e quindi infinite) halving lines. Se inoltre può esservi d\'aiuto vi dico pure che alcuni importanti risultatti ottenuti riguardo a problemi simili a questo(dal mio miglior \"amico\" Paul Erdos , Janos Pach , Boris Aronov e altri) considerano le intersezioni di segmenti ottenuti congiungendo a due a due i punti.
<BR>CHI NON è CAPACE DI FAR FRONTE ALLA MATEMATICA NON è VERAMENTE UN ESSERE UMANO.AL MASSIMO è UN TOLLERABILE SUBUMANO CHE HA IMPARATO A INFILARSI LE SCARPE, LAVARSI E NON METTERE A SOQQUADRO LA CASA(Ron Graham)

J4Ck202
Messaggi: 196
Iscritto il: 01 gen 1970, 01:00
Località: Pisa

Messaggio da J4Ck202 » 01 gen 1970, 01:33

Ok, ok... stavo congetturando (e sembra abbastanza plausibile) che se
<BR>connettiamo tutti i punti a formare un poligono non intrecciato, e diamo
<BR>peso n a tutti i vertici neri e peso m a tutti i vertici rossi ci sarà almeno una
<BR>halving line che passi per il baricentro del poligono... ma per ora non ho
<BR>stralci di dimostrazione... curiosità: da dove proviene il problema?
<BR>
<BR>

Avatar utente
XT
Messaggi: 695
Iscritto il: 01 gen 1970, 01:00
Località: Piacenza

Messaggio da XT » 01 gen 1970, 01:33

Curiosità anch\'io: è possibile determinare il baricentro di un poligono?
"Signore, (a+b^n)/n=x, dunque Dio esiste!" (L.Euler)

Iulius_Gaius_Caesar
Messaggi: 9
Iscritto il: 01 gen 1970, 01:00
Località: Napoli

Messaggio da Iulius_Gaius_Caesar » 01 gen 1970, 01:33

Mi sembra assai difficile che si possa usare il baricentro del sistema di punti (di poligono nemmeno a parlarne) .Infatti il baricentro si può definire solo analiticamente come il punto avente come coordinate la media delle coordinate dei punti.Il problema però dal punto di vista analitico diventa ancor più ostico di quanto non lo sia già di per sé.Infatti è difficilissimo dedurre qualcosa analiticamente imponendo la condizione che i punti non siano allineati.Per quanto riguarda la provenienza... beh vi rivelo che questo problema ,che è un fondamentale teorema della geometria combinatoria(chi conosce il mio amico Paul sa di cosa si tratti) è stato dato nel \'97 come preparazione alla fase finale delle Olimpiadi di Matematica

Avatar utente
XT
Messaggi: 695
Iscritto il: 01 gen 1970, 01:00
Località: Piacenza

Messaggio da XT » 01 gen 1970, 01:33

In pratica la soluzione di Jack sarebbe sbagliata?
<BR>Correggetemi se ho detto un\'eresia.
"Signore, (a+b^n)/n=x, dunque Dio esiste!" (L.Euler)

J4Ck202
Messaggi: 196
Iscritto il: 01 gen 1970, 01:00
Località: Pisa

Messaggio da J4Ck202 » 01 gen 1970, 01:33

Il baricentro di un sistema di punti è da intendersi fisicamente, non a caso ho parlato di dare un PESO ai singoli. Anyway si può calcolare il baricentro di un qualunque quid geometrico limitato, anche di un simplesso in R4, bastano un po\' di integralini... Vi ripropongo un problema già apparso sul forum: trovare il baricentro di un semicerchio (omogeneo).
<BR>
<BR>La mia soluzione non può essere sbagliata, per il semplice fatto che non ho postato alcuna soluzione! Resta da dimostrare che esiste SEMPRE un orientamento del gruppo di punti tale che gli intervalli (n1;n2) e (r1,r2) abbiano una intersezione... il che è eye-obvious ma math-difficult...
<BR>
<BR>

lakrimablu
Messaggi: 130
Iscritto il: 01 gen 1970, 01:00

Messaggio da lakrimablu » 01 gen 1970, 01:33

jack sembri il preside di >bedside school<
<BR>per il bene dell\'umanita cambia faccina.

J4Ck202
Messaggi: 196
Iscritto il: 01 gen 1970, 01:00
Località: Pisa

Messaggio da J4Ck202 » 01 gen 1970, 01:33

E la congettura è effettivamente sbagliata, c\'è un banale controesempio... <IMG SRC="images/forum/icons/icon_frown.gif">

Iulius_Gaius_Caesar
Messaggi: 9
Iscritto il: 01 gen 1970, 01:00
Località: Napoli

Messaggio da Iulius_Gaius_Caesar » 01 gen 1970, 01:33

Molte grazie ragazzi per l\'immenso aiuto Ve ne sarò per sempre grato

Iulius_Gaius_Caesar
Messaggi: 9
Iscritto il: 01 gen 1970, 01:00
Località: Napoli

Messaggio da Iulius_Gaius_Caesar » 01 gen 1970, 01:33

Scusatemi ragazzi per il mio \"incavolato\" rimprovero, ma ero davvero fuori di me perché non mi è venuta nemmeno un\'idea in questi giorni.In ogni caso Jack qual\'è il tuo controesempio? E che cosa intendenvi dire con la parola orientamento?Cosa ne pensi di considerare l\'intersezione degli insiemi delle halving lines dei 2m punti e di quelle dei 2n punti?<BR><BR>[ Questo Messaggio è stato Modificato da: Iulius_Gaius_Caesar il 06-01-2003 13:27 ]

Bloccato