Fermat

Vuoi proporre i tuoi esercizi? Qui puoi farlo!!

Moderatore: tutor

Bloccato
Avatar utente
psion_metacreativo
Messaggi: 645
Iscritto il: 01 gen 1970, 01:00

Messaggio da psion_metacreativo » 01 gen 1970, 01:33

Ciao a tutti è da poco che mi sono registrato, e questa è la prima volta in assoluto che scrivo in questi forum. Vorrei saper, da matematici più esperti di me, se questa critica, che ho trovato navigando on-line, alla dimostrazione di Wiles dell\'ultimo teorema di Fermat, è corretta. Ringrazio fin da ora per le risposte che giungeranno.
<BR>
<BR>La dimostrazione del teorema di Fermat; da parte di Wiles, ma unitamente al contributo di diversi matematici del XX secolo, si fonda sul presupposto della riduzione all’assurdo dell’esistenza di un’equazione che contiene le ipotetiche soluzioni dell’equazione di Fermat ossia l’equazione ellittica di Frey. Frey ha ottenuto questa equazione complicando l’equazione di Fermat con le sue ipotetiche soluzioni.
<BR>Wiles sarebbe riuscito a dimostrare che tutte le equazioni ellittiche, quindi anche quella di Frey, possiedono una proprietà particolare, ossia quella di essere equazioni modulari. Se non che, dai risultati delle ricerche, è emerso che l’equazione ellittica di Frey non avrebbe questa proprietà. La conclusione tratta da Wiles, sulla base delle sue dimostrazioni, è la seguente: poiché tutte le equazioni ellittiche sono modulari e poiché l’equazione ellittica di Frey non è modulare allora l’equazione ellittica di Frey non esiste, sarebbe un semplice mostro matematico, perciò i simboli delle ipotetiche soluzioni dell’equazione di Fermat contenuti nell’equazione ellittica di Frey, sono simboli di niente, sono semplici segni grafici senza alcun significato. Dunque, siccome l’equazione ellittica di Frey è stata ottenuta dall’equazione di Fermat presupponendone le soluzioni, e siccome l’equazione ellittica di Frey non esiste, non esistono neppure le soluzioni dell’equazione di Fermat e cioè quanto si voleva dimostrare.
<BR>Questa dimostrazione, apparentemente ineccepibile, presenta tuttavia un punto di debolezza nel momento in cui tratta di un oggetto da prendere con estrema cura e al quale forse non è stata prestata sufficiente attenzione critica (epistemologica). Questo oggetto è l’esistenza di qualche cosa. Infatti qualsiasi dimostrazione o argomentazione non può prescindere in nessun caso dall’esistenza dell’oggetto di cui si vuole dimostrare qualche cosa. Anche la dimostrazione per assurdo, che riguardi l’esistenza di qualcosa, deve essere eseguita con estrema attenzione epistemologica. Si può dimostrare abbastanza agevolmente l’esistenza o la non esistenza di una proprietà di un oggetto, ma ben altra cosa è dimostrare l’esistenza o la non esistenza dell’oggetto medesimo di cui si evidenziano delle proprietà. Infatti è impossibile dimostrare l’esistenza o la non esistenza di un oggetto sulla base di una sua caratteristica. Questo è naturalmente un assioma, ma un assioma di cui non si intravedono eccezioni. Questo assioma, che ho chiamato dell’esistenza implicita può essere formulato, in modo più rigoroso, come segue: ∀x[(x ∈ p)⊃ Ǝx(x ∈ p)], ossia: per ogni x, se x possiede la proprietà p (o non p), allora esiste un x tale che x è p (o non p). In termini più semplici si può affermare che, se x ha la proprietà p (o non p), allora x esiste. Certamente questo vale in senso logico e non in senso fisico, per cui logicamente esistono anche le chimere, ma non fisicamente. È però assai semplice intuire che gli oggetti della matematica non hanno un’esistenza fisica, ma soltanto logica.
<BR>Riportiamo ora la precedente argomentazione alla dimostrazione del teorema di Fermat. Lo schema logico delta dimostrazione è il seguente:
<BR>a) Tutte le equazioni ellittiche sono modulari
<BR>b) L’equazione ellittica di Frey non è modulare
<BR>c) L’equazione ellittica di Frey non esiste
<BR>d) L’equazione di Fermat non ha soluzioni
<BR>Ossia:
<BR>a) ∀x(x ∈ p)
<BR>b) x1 ∈ -p
<BR>c) -E x1
<BR>d)TF
<BR>Tuttavia, per l’assioma dell’esistenza implicita possiamo svolgere la seguente deduzione
<BR>a) ∀x(x ∈ p) (tutte le equazioni ellittiche sono modulari)
<BR>b) ∀x(x ∈ -p) (esiste un’equazione ellittica, quella di Frey, non modulare)
<BR>c) Contraddizione (a o b, è falso)
<BR>Questo argomento, ammesso l’assioma, ci fa concludere che Wiles non ha dimostrato il teorema di Fermat.
<BR>Più semplicemente, il ragionamento dimostrativo, portato all’essenziale, sarebbe analogo ai seguenti:
<BR>a) Tutti triangoli hanno tre lati
<BR>b) Il triangolo di questo disegno non ha tre lati
<BR>c) Il triangolo di questo disegno non esiste
<BR>Oppure:
<BR>a) Tutti gli alberi hanno foglie verdi
<BR>b) L ‘albero del mio giardino non ha foglie verdi
<BR>c) L ‘albero del mio giardino non esiste
<BR>In questi esempi è facile vedere come sia stata utilizzata una logica poco corretta, perché si intende dimostrare la non esistenza di un oggetto sulla base di una sua proprietà (o non proprietà), che ne presuppone l’esistenza. L’equazione ellittica di Frey, dunque, se la si ritiene tale, esiste. Se invece è un semplice segno grafico, allora non la si può trattare, neanche per assurdo, come equazione, per ricercarne le proprietà o le non proprietà, perché in questo caso le (ipotetiche) soluzioni dell’equazione di Fermat sono ammesse conte reali e non ipotetiche, come facenti parte della struttura stessa dell’equazione, senza le quali è vero che l’equazione non esisterebbe, ma, di conseguenza, cadrebbe ogni ulteriore argomento, in quanto non ne potrebbe essere studiata la struttura, tale da essere definita non modulare. In realtà noi non sappiamo ancora se l’espressione grafica di Frey (detta equazione ellittica) sia un’equazione ellittica o un’opera d’arte, e Fermat ha vinto la sua ennesima sfida.
<BR><BR><BR>[ Questo Messaggio è stato Modificato da: psion_metacreativo il 30-12-2002 14:56 ]

Avatar utente
XT
Messaggi: 695
Iscritto il: 01 gen 1970, 01:00
Località: Piacenza

Messaggio da XT » 01 gen 1970, 01:33

La dimostrazione di Wiles è stata effettivamente sviluppata secondo questi quattro punti che hai elencato e dal mio punto di vista penso che la critica sia più che legittima.
<BR>Tuttavia per prima bisognerebbe poter consultare la dimostrazione ufficiale (non so se è possibile) perché potrebbe essere stata condotta in altro modo o almeno è quello che mi viene in mente poiché mi sembra strano che un errore nella dimostrazione del teorema più famoso del mondo sia sfuggita ai sei esaminatori e a tutti i matematici che l\'hanno sondata.
<BR>Comunque appoggio questa critica per quanto mi è possibile capirne.
<BR>
<BR>P.S. Lo psion è una gran classe ma cambia il metacreativo. Direi che il telepate è il migliore
<BR><BR><BR>[ Questo Messaggio è stato Modificato da: XT il 31-12-2002 00:19 ]
"Signore, (a+b^n)/n=x, dunque Dio esiste!" (L.Euler)

DD
Messaggi: 644
Iscritto il: 01 gen 1970, 01:00
Località: Pisa, talvolta Torino

Messaggio da DD » 01 gen 1970, 01:33

Senza leggerla, direi che la critica non è corretta (la comunità matematica mondiale ha accettato la dimostrazione di Wiles da 8 anni).
<BR>Dopo averla letta, direi che più che da un matematico potrebbe essere scritta da un filosofo, si basa su un ragionamento piuttosto capzioso, ma che probabilmente travisa in qualche punto la dimostrazione di Wiles, cercando di far sembrare assurdo un normale ragionamento per assurdo che con tutta probabilità assurdo non lo è affatto. Il passaggio in cui dice \"i simboli dell\'equazione di Frey sono simboli di niente ecc. \" mi pare degno della migliore sofistica. (Ovviamente non avendo letto la dimostrazione di Wiles non posso dire dove esattamente si sbagli il signor critico, ma il tono è assai sospetto)
[img:2sazto6b]http://digilander.iol.it/daniel349/boy_math_md_wht.gif[/img:2sazto6b]

Avatar utente
XT
Messaggi: 695
Iscritto il: 01 gen 1970, 01:00
Località: Piacenza

Messaggio da XT » 01 gen 1970, 01:33

Bisognerebbe avere la dimostrazione sotto mano comunque rimane il fatto che nessuno ha ancora trovato la dimostrazione che Fermat aveva in mente.
"Signore, (a+b^n)/n=x, dunque Dio esiste!" (L.Euler)

simo01
Messaggi: 13
Iscritto il: 01 gen 1970, 01:00

Messaggio da simo01 » 01 gen 1970, 01:33

La dimostrazione proposta da Wiles è un misto di tecniche matematiche moderne e contiene diverse innovazioni (ricordiamo che il realtà Wiles ha dimostrato la congettura di Shimura-Taniyama\").
<BR>La dimostrazione è molto complessa (ho provato a capirci qualcosa ma con scarso successo).
<BR>Comunque se vi interessa il testo integrale è diviso in due articoli:
<BR>
<BR>Modular elliptic curves and Fermat\'s Last Theorem (il cuore della dimostrazione)
<BR>http://users.tpg.com.au/nanahcub/flt/wiles.pdf
<BR>
<BR>Ring Theoretic Properties of Certain Hecke Algebras
<BR>http://www4.tpg.com.au/nanahcub/flt/tw.pdf
<BR>
<BR>Dategli un occhiata e fatemi sapere.......
<BR>Buona Fortuna
<BR>
<BR>Ciao da Simo

flexus
Messaggi: 1
Iscritto il: 01 gen 1970, 01:00

Messaggio da flexus » 01 gen 1970, 01:33

Il sito dal quale è stata tratta l\'ispirazione per il primo post contiene anche le seguenti affermazioni :
<BR>--------------------------------------------------------------------------------------
<BR>...Zero e infinito limiti di una funzione
<BR>...Tesi: zero e infinito possono costituire limiti di una funzione.
<BR>...Il problema è: Zero e infinito sono numeri definiti?
<BR>...Soltanto numeri definiti (quantità definite) possono costituire limiti. Essi sono invece \"irraggiungibili\". Come tali sono infinitamente al di là di ogni limite.
<BR>--------------------------------------------------------------------------------------
<BR>
<BR>Bisogna rifletterci su o è meglio lasciar perdere ? Che ne pensate ?

Avatar utente
psion_metacreativo
Messaggi: 645
Iscritto il: 01 gen 1970, 01:00

Messaggio da psion_metacreativo » 01 gen 1970, 01:33

Siccome la scorsa estate per un lavoro di matematica ho dovuto legger il libro sull\'ultimo teorema di Fermat e volevo sapere sesono state 200 e rotte pagine a vuoto, cioè per carità la matematica di Wiles è ottima e ha introdotto tante e tali novità da far paura, però volevo sapere se la sfida ha Fermat è rimasta aperta.

ma_go
Site Admin
Messaggi: 1906
Iscritto il: 01 gen 1970, 01:00

Messaggio da ma_go » 01 gen 1970, 01:33

No! Un tale Andrea Ossicini ha dimostrato il teorema per gli n dispari (per n =4 l\'aveva risolto Fermat stesso o Eulero) con metodi euleriani (cioè con tecniche relativamente \"vecchie\" e in una dimostrazione di poche pagine (una dozzina con i lemmi). Complimenti a lui!

Avatar utente
massiminozippy
Messaggi: 736
Iscritto il: 01 gen 1970, 01:00

Messaggio da massiminozippy » 01 gen 1970, 01:33

Vorrei chiedervi uan cosa. Il teorema di fermat in questione è il seguente:
<BR>x^n+y^n=z^n. Fermat sosteneva che per n>2 l\'equazione nn aveva radici intere positive. Ciò che hai appena detto ma_go, vuol dire che Fermat ha dimostato la validità del suo teorema per n=4, oppure che lo ha risolto per n=4, e con risolto intendo dire che ha trovato gli x,y,z interi positivi.???
<BR>Credo più la prima........
<BR>Cmq se nn sbaglio per n=3 era stato dimostrato da Eulero e con N=4 dallo stesso Eulero con la tecnica della \"discesa infinita\"(nn chiedetemi cosa sia).
<BR>Poi volevo dire che la dimostrazione ossicini nn è stata ancora accetta, ma per il momento ancora nessuno ha trovato errori.
<BR>
<BR>

Avatar utente
XT
Messaggi: 695
Iscritto il: 01 gen 1970, 01:00
Località: Piacenza

Messaggio da XT » 01 gen 1970, 01:33

La prima massimino: ha dimostrato che è impossibile per n=4, sarebbe stato troppo bello... <IMG SRC="images/forum/icons/icon_biggrin.gif">
"Signore, (a+b^n)/n=x, dunque Dio esiste!" (L.Euler)

Bloccato