Olimpiadi Canadesi del 2001.

Vuoi proporre i tuoi esercizi? Qui puoi farlo!!

Moderatore: tutor

Bloccato
Maus
Messaggi: 133
Iscritto il: 01 gen 1970, 01:00

Messaggio da Maus » 01 gen 1970, 01:33

sia ABC un triangolo con AC>AB. SIA PilPUNTO DI INTERSEZIONE TRA L\'ASSE DI bc E LA BISETTRICE DELL\'ANGOLO in A. fissare i punti X e Y rispettivamente su AB e AC tali che PX sia perpendicolare ad AB e PY lo sia ad AC. Sia Z l\'intersezione tra XY e BC. determinare il rapporto BZ/ZC.
<BR>
<BR>Buone vacanze a tutti.

alberto
Messaggi: 197
Iscritto il: 01 gen 1970, 01:00
Località: milano

Messaggio da alberto » 01 gen 1970, 01:33

secondo i miei calcoli (forse ho capito male) x e y stanno sui prolungamenti dei lati e non sui lati: c\'è qualcosa che non funziona? ... corigetemi se sbaglio <IMG SRC="images/splatt_forum/icons/icon_confused.gif">

alberto
Messaggi: 197
Iscritto il: 01 gen 1970, 01:00
Località: milano

Messaggio da alberto » 01 gen 1970, 01:33

volevo dire: uno dei due punti (x o y)

Maus
Messaggi: 133
Iscritto il: 01 gen 1970, 01:00

Messaggio da Maus » 01 gen 1970, 01:33

sì alberto, pensavo fosse chIaro; comunque, X sta sul prolungamento di AB.

alberto
Messaggi: 197
Iscritto il: 01 gen 1970, 01:00
Località: milano

Messaggio da alberto » 01 gen 1970, 01:33

ok... ritiro tutto...(mai fare considerazioni inutili prima di aver letto un problema fino alla fine) <IMG SRC="images/splatt_forum/icons/icon_razz.gif">

jack202
Messaggi: 231
Iscritto il: 01 gen 1970, 01:00
Località: Chieti
Contatta:

Messaggio da jack202 » 01 gen 1970, 01:33

Con la geometria analitica mi viene che
<BR>Z coincide col punto medio di BC, però mi
<BR>sembra strano... ho dimenticato come si
<BR>disegna o come si fanno i conti ?
<BR>
<BR>

Avatar utente
Antimateria
Messaggi: 651
Iscritto il: 01 gen 1970, 01:00
Località: Vergate sul Membro

Messaggio da Antimateria » 01 gen 1970, 01:33

Non hai dimenticato niente, Jack! <IMG SRC="images/splatt_forum/icons/icon_wink.gif">
<BR>
<BR>Allora, sia M il punto medio di BC. Tracciamo i segmenti XM, YM, BP e CP. Abbiamo BP=CP e XP=YP. Dato che i triangoli BPX e CPY sono rettangoli ed hanno l\'ipotenusa ed un cateto uguali, sono anch\'essi uguali. In particolare, <BPX = <CPY. Poi, <PXB e <BMP sono retti, quindi il quadrilatero XPMB è inscrivibile in una circonferenza, e gli angoli <BMX e <BPX sono uguali perchè insistono sullo stesso arco. <PMC e <PYC sono retti, quindi <MPY = <MCY, perchè complementari dello stesso angolo. Ma allora il segmento MY è visto da P e da C sotto lo stesso angolo, e quindi il quadrilatero MYCP è inscrivibile in una circonferenza. Dunque <YPC = <YMC perchè angoli alla circonferenza che insistono sullo stesso arco. Da tutto \'sto casino si ricava <BMX = <CMY. Questo significa che X, M e Y sono allineati, quindi Z coincide con M ed il rapporto BZ/ZC vale 1.
<BR>
<BR> <IMG SRC="images/splatt_forum/icons/icon21.gif"> [addsig]

Bloccato