dimostrazione formula calcolo autovalori matrice

Vuoi proporre i tuoi esercizi? Qui puoi farlo!!

Moderatore: tutor

Bloccato
hexen
Messaggi: 237
Iscritto il: 01 gen 1970, 01:00
Località: polonia
Contatta:

Messaggio da hexen » 01 gen 1970, 01:33

ciao
<BR>
<BR>vorrei proporvi una mia dimostrazione (può darsi sia stata già fatta da qualcun altro) che gli autovalori k di una matrice quadrata A sono dati dalle radici dell\'equazione det(A-kI)=0
<BR>dove I è la matrice identità delle stesse dimensioni di A.
<BR>dunque
<BR>
<BR>per la definizione di autovettori e di autovalori si ha che l\'autovettore V della matrice A è tale che AV=kV
<BR>Moltiplicando entrambi i membri per la matrice identità otteniamo
<BR>IAV=kIV
<BR>portiamo tutto a sinistra considerando che IA=A
<BR>AV-kIV=0
<BR>raccogliamo V
<BR>(A-kI)V=0
<BR>
<BR>la matrice incompleta di questo sistema è M=A-kI
<BR>Il sistema è omogeneo, ha la soluzione nulla se det M /= 0, ma dato che l\'autovettore non può essere nullo dobbiamo porre
<BR>det M = det(A-kI) = 0 dal quale si trovano gli autovalori k
<BR>
<BR>è corretta questa dimostrazione??
<BR>
[url=http://davidpet.interfree.it/renato.html:3r47vsho]Stamattina hanno suonato alla porta. Sono andato ad aprire e...[/url:3r47vsho]
[url=http://davidpet.interfree.it/jabber/index.html:3r47vsho]Guida introduttiva a Jabber[/url:3r47vsho]

Avatar utente
Antimateria
Messaggi: 651
Iscritto il: 01 gen 1970, 01:00
Località: Vergate sul Membro

Messaggio da Antimateria » 01 gen 1970, 01:33

Ciau Hexen, e benvenuto nel forum (come stanno Korax e D\'Sparil?).
<BR>Sì, la dimostrazione è giusta. Quello che hai trovato si chiama polinomio caratteristico (nella variabile k), ed ha grado pari all\'ordine delle matrice.
<BR>Ma ahimè tutto questo non c\'entra nulla con il forum, nè con la categoria Proponi gli esercizi.

Bloccato

Chi c’è in linea

Visitano il forum: Nessuno e 4 ospiti