Serie

Vuoi proporre i tuoi esercizi? Qui puoi farlo!!

Moderatore: tutor

Bloccato
Avatar utente
karl
Messaggi: 926
Iscritto il: 01 gen 1970, 01:00

Messaggio da karl » 01 gen 1970, 01:33

Come si dimostra che se la serie {An} e\' assolutamente
<BR>convergente lo e\' anche la serie {An/(1+An)}?
<BR>

Avatar utente
talpuz
Moderatore
Messaggi: 873
Iscritto il: 01 gen 1970, 01:00
Località: Pisa

Messaggio da talpuz » 01 gen 1970, 01:33

...intendi la \"serie relativa ai termini della successione {A<sub>n</sub>}\", immagino
[img:18oeoalk]http://www.narutolegend.it/char_img/Sasuke.jpg[/img:18oeoalk]

Avatar utente
bh3u4m
Messaggi: 547
Iscritto il: 01 gen 1970, 01:00
Località: Milano

Messaggio da bh3u4m » 01 gen 1970, 01:33

Dunque se A<sub>n</sub> per n --> inf è sempre più prossimo allo zero, e sapendo che a<sub>n</sub>+1 è dunque sempre maggiore di 1, la frazione A<sub>n</sub>/(A<sub>n</sub>+1) sarà minore di A<sub>n</sub>.
<BR>Per altri casi basta modificare il ragionamento opportunamente.
In the break of new dawn
My hope is forlorn
Shadows they will fade
But I'm always in the shade
Without you...

My Selene - Sonata Arctica

mik84
Messaggi: 69
Iscritto il: 01 gen 1970, 01:00
Località: Futani (SA)

Messaggio da mik84 » 01 gen 1970, 01:33

Se la serie relativa ai termini della successione A(n) converge assolutamente, il limite per n che tende all\'infinito del termine A(n) è 0 (questa è una condizione necessaria). Inoltre, se tale successione converge assolutamente, vale il criterio del rapporto, per cui il limite del valore assoluto di A(n+1)/A(n) non può essere maggiore di 1 (altrimenti la successione non convergerebbe).
<BR>Applicando, dunque il criterio del rapporto alla serie che ha per termine generale A(n)/1+A(n), si ritrova che il limite di valore assoluto di [A(n+1)*(1+A(n))/(1+A(n+1))*A(n)] è proprio uguale al limite della serie precedente, poiché il limite di [1+A(n)]/[1+A(n+1)] è uguale a 1.

Avatar utente
karl
Messaggi: 926
Iscritto il: 01 gen 1970, 01:00

Messaggio da karl » 01 gen 1970, 01:33

Per quello che ne so, la condizione lim[A(n+1)/An]<1 e\' sufficiente ma
<BR>non necessaria per la convergenza ;pertanto il fatto che la serie data sia assol.convergente non implica necessariamente che sia lim[A(n+1)/An]<1
<BR>(questo limite potrebbe essere 1 o non esistere)
<BR>Cio e\' dimostrato ,ad es. ,dalla serie armonica generalizzata {1/n^2}
<BR>la quale,come e\' noto,converge ma risulta lim[A(n+1)/An]=1
<BR>come e\' facile verificare.
<BR>E\' questo che mi ha fatto arenare.Dove sbaglio?.
<BR>Grazie a tutti.<BR><BR>[ Questo Messaggio è stato Modificato da: karl il 19-03-2004 14:22 ]

mik84
Messaggi: 69
Iscritto il: 01 gen 1970, 01:00
Località: Futani (SA)

Messaggio da mik84 » 01 gen 1970, 01:33

C\'è un modo migliore....
<BR>Poiché la serie degli A(n) converge, ha termine infinitesimo. Consideriamo le serie dei valori assoluti delle due serie: se A(n) è infinitesimo, il termine generico della prima serie è asintotico (per n tendende all\'infinito) a quello della seconda(si dice che due funzioni sono asintotiche, se il limite - per n che tende all\'infinito - del loro rapporto è 1). Per il CRITERIO DEL CONFRONTO ASINTOTICO, le due serie hanno il medesimo carattere, da cui la conclusione che la seconda serie converge assolutamente.

Avatar utente
karl
Messaggi: 926
Iscritto il: 01 gen 1970, 01:00

Messaggio da karl » 01 gen 1970, 01:33

Ok! Questa soluzione mi piace:grazie.
<BR>

Bloccato