esercizi in saldo!

Vuoi proporre i tuoi esercizi? Qui puoi farlo!!

Moderatore: tutor

Ospite

Messaggio da Ospite » 01 gen 1970, 01:33

mmmm...
<BR>
<BR>tra k numeri CONSECUTIVI ci sono almeno
<BR>
<BR>int(k/2) numeri divisibili per 2
<BR> int(k/3) numeri divisibili per 3
<BR> int(k/4) numeri divisibili per 4
<BR> etc etc
<BR> 1 numero divisibile per k
<BR>
<BR>dunque il prodotto di k numeri consecutivi e\' sicuramente multiplo di k!
<BR>
<BR>a mio parere la mia soluzione funziona e mi sembra uguale a quella di andrea <!-- BBCode Start --><I>aggiunta: (ok non e\' uguale, ma secondo me, andrea voleva dire questo!) </I><!-- BBCode End -->ma non ne sono sicura..sono un po\' fusa ultimamente quindi fatemi sapere!
<BR>grazie e ciauz
<BR>-f-<BR><BR>[ Questo Messaggio è stato Modificato da: franc il 09-01-2004 23:20 ]

lordgauss
Messaggi: 478
Iscritto il: 01 gen 1970, 01:00
Località: Brunswick

Messaggio da lordgauss » 01 gen 1970, 01:33

Questa funziona, anche se detta così è un po\' approssimativa, e non è uguale a quella di andrea

Biagio
Messaggi: 535
Iscritto il: 01 gen 1970, 01:00
Località: Piacenza

Messaggio da Biagio » 01 gen 1970, 01:33

questa è diversa direi, adesso non ho nulla da obbiettare <IMG SRC="images/forum/icons/icon_biggrin.gif">
<BR>(non era così ovvio il passaggio)
<BR>-----
<BR>ops...vabbé, io e Lord la pensiamo evidentemente uguale.... <IMG SRC="images/forum/icons/icon21.gif"> <BR><BR>[ Questo Messaggio è stato Modificato da: Biagio il 09-01-2004 23:19 ]

Avatar utente
talpuz
Moderatore
Messaggi: 873
Iscritto il: 01 gen 1970, 01:00
Località: Pisa

Messaggio da talpuz » 01 gen 1970, 01:33

<!-- BBCode Quote Start --><TABLE BORDER=0 ALIGN=CENTER WIDTH=85%><TR><TD><font size=-1>Quote:</font><HR></TD></TR><TR><TD><FONT SIZE=-1><BLOCKQUOTE>
<BR>On 2004-01-09 16:58, franc wrote:
<BR>
<BR>2. si determinino gli interi positivi k tale che il polinomio P(x)=x^5+x^4+x³+kx²+x+1 si possa scrivere come prodotto di polinomi di grado inferiore a 5
<BR>
<BR></BLOCKQUOTE></FONT></TD></TR><TR><TD><HR></TD></TR></TABLE><!-- BBCode Quote End -->
<BR>
<BR>questo è quasi immediato me sono taaanti conti <IMG SRC="images/forum/icons/icon_eek.gif">
<BR>visto che la sommadei gradi dei polinomi \"fattori\" (chiamiamoli R(x) e Q(x)) deve essere 5, abbiamo 2 possibilità
<BR>-deg[R(x)]=1, deg[Q(x)]=4 o viceversa
<BR>-deg[R(x)]=2, deg[Q(x)]=3 o viceversa
<BR>
<BR>ovviamente possiamo per simmetria fregarcene dei \"viceversa\", e analizzare queste 2 possibilità
<BR>
<BR>nel primo caso, un osservazione utile è che, visto che possiamo scrivere
<BR>P(x)=(x-a)Q(x), segue che a è radice di P(x), quindi divide il termine noto, quindi è +1 o -1. quindi se a=1
<BR>P(a)=5+k=0 cioè k=-5 otherwise
<BR>P(a)=k-1=0 cioè k=1
<BR>e si verifica che per questi due valori il polinomio si può effettivamente scomporre
<BR>
<BR>nel secondo caso, visto che il termine noto di P(x) è 1, i termini noti di R(x) e Q(x) sono entrambi 1 o entrambi -1
<BR>introducendo dei coefficienti variabili per R(x) e Q(x), facendo i conti, uguagliando monomio per monomio e risolvendo qualche sistema si ottiene che anche qui l\'unico valore ammissibile è k=1, e si verifica che per tale valore P(x) si scompone anche in un fattore di grado 2 e uno di grado 3
<BR>
<BR>quindi k=-5 o k=1, e bon
<BR>
<BR>----
<BR>
<BR>EDIT: si, beh, tutto ciò è valido se i polinomi devono essere a coefficienti interi (mi sono accorto adesso che non era nelle ipotesi)<BR><BR>[ Questo Messaggio è stato Modificato da: talpuz il 09-01-2004 23:58 ]
[img:18oeoalk]http://www.narutolegend.it/char_img/Sasuke.jpg[/img:18oeoalk]

Biagio
Messaggi: 535
Iscritto il: 01 gen 1970, 01:00
Località: Piacenza

Messaggio da Biagio » 01 gen 1970, 01:33

<!-- BBCode Quote Start --><TABLE BORDER=0 ALIGN=CENTER WIDTH=85%><TR><TD><font size=-1>Quote:</font><HR></TD></TR><TR><TD><FONT SIZE=-1><BLOCKQUOTE>
<BR>On 2004-01-09 16:58, franc wrote:
<BR>..perdonatemi per il soggetto un po\' squallido ma non ho resistito..
<BR>
<BR>3. siano a_1, a_2,..., a_n, b_1, b_2,..., b_n numeri reali positivi tali che
<BR>suma_i = sumb_i
<BR>dimostrare che 2(sum(a_i)²/(a_i+b_i)) >= suma_i
<BR>
<BR>ciao
<BR>-f-[addsig]
<BR></BLOCKQUOTE></FONT></TD></TR><TR><TD><HR></TD></TR></TABLE><!-- BBCode Quote End -->
<BR>
<BR>poiché suma_i = sumb_i==>suma_i=(suma_i + sumb_i)/2
<BR>inoltre, per questioni di simmetria anche
<BR>2(sum(b_i)²/(a_i+b_i)) > =(sum[i=1...n]a_i + sum[i=1...n]b_i)/2
<BR>ora, sottraendo membro a membro con la precedente, si ha:
<BR>
<BR>2(sum[i=1...n]((a_i)²-(b_i)²)/(a_i+b_i))>=0
<BR>cioè
<BR>sum[i=1...n](a_i-b_i)>=0, il che è vero inquanto si ottiene
<BR>sum[i=1...n](a_i)-sum[i=1...n](b_i)=0

J4Ck202
Messaggi: 196
Iscritto il: 01 gen 1970, 01:00
Località: Pisa

Messaggio da J4Ck202 » 01 gen 1970, 01:33

3) Oppure normalizziamo
<BR> c = a / sum(a)
<BR> d = b / sum(b) = b / sum(a)
<BR> in modo che sum(c)=sum(d)=1
<BR>e poi applichiamo Cauchy-Schwarz
<BR> sum(c^2 / (c+d)) sum((c+d)) >= (sum(c))^2 = 1
<BR>
<BR>

Ospite

Messaggio da Ospite » 01 gen 1970, 01:33

...uff..visto che jack ha schiacciato una mia soluzione alternativa al problema 3 con una parecchio fighetta, posto altri due problemi (tanto con i saldi..)...
<BR>
<BR>il primo e\' dedicato a tutti mentre il secondo e\' un buon esercizio per chi ha voglia di prepararsi alla gara di febbraio ma magari non e\' abituato..
<BR>
<BR>1. trovare tutti gli interi positivi < 200 tali che n^2 + (n+1)^2 sia un quadrato perfetto
<BR>
<BR>2. dimostrare che esistono infiniti triangoli T tali che le lunghezze dei lati di T sono interi consecutivi e l\'area di T è intera
<BR>
<BR>ciao!
<BR>-f-[addsig]

lordgauss
Messaggi: 478
Iscritto il: 01 gen 1970, 01:00
Località: Brunswick

Messaggio da lordgauss » 01 gen 1970, 01:33

Nordic Mathematical Contest (1994?)

andrea84
Messaggi: 203
Iscritto il: 01 gen 1970, 01:00
Località: Trento

Messaggio da andrea84 » 01 gen 1970, 01:33

Ciao a tutti!
<BR>
<BR>Per quanto riguarda il primo vorrei sapere se sono sulla buona strada:
<BR>allora abbiamo la nostra eq:
<BR>
<BR>n^2+(n+1)^2=k^2 con k numero intero
<BR>
<BR>chiamiamo n=2ab, n+1=a^2-b^2 e k=a^2+b^2, (terne pitagoriche) dunque se troviamo tutti gli a e b interi tali che 2ab=a^2-b^2-1 allora abbiamo finito(credo).
<BR>Dunque...a^2-b^2-2ab-1=0 consideriamola come un\'equazione di secondo grado in a da cui a=(b^2+-sqrt(2b^2+1)) ora poichè a è intero 2b^2+1 deve essere un quadrato, abbiamo quindi 2b^2+1=q^2 (1) (q intero) che è un\'equazione di Pell con soluzione minima (q=17 e b=12), da qui applicando la formula risolutiva troviamo la forma generale delle soluzioni della (1) .
<BR>Fatto questo possiamo trovare la forma generale delle a e quindi facendo le dovute considerazioni sul fatto che n<200 dovremmo poter tirare fuori qualcosa no?
<BR>
<BR>Non siate troppo pesanti con gli insulti please! <IMG SRC="images/forum/icons/icon_cool.gif">
<BR>
<BR>Ciao
Andrea 84 alias Brend

dieciottantunesimi
Messaggi: 218
Iscritto il: 01 gen 1970, 01:00
Località: (0;1/5)

Messaggio da dieciottantunesimi » 01 gen 1970, 01:33

Ciao Franc, vorrei un chiarimento sul problema dei triangoli. Sono triangoli eroniani se non ricordo male la definizione. Il fatto è: cosa intendi per interi consecutivi? Perchè ora come ora, trattandosi di un eq. diofantina, mi sembra impossibile, ad occhio, che esistano. Grazie.
<BR>
<BR>Credo però davvero di non aver capito la formulazione del problema.<BR><BR>[ Questo Messaggio è stato Modificato da: dieciottantunesimi il 11-01-2004 13:24 ]
<img src="http://www.ocf.berkeley.edu/~wwu/YaBBImages/avatars/run_in_box.gif">

dieciottantunesimi
Messaggi: 218
Iscritto il: 01 gen 1970, 01:00
Località: (0;1/5)

Messaggio da dieciottantunesimi » 01 gen 1970, 01:33

3, 4, 5
<BR>20, 21, 29
<img src="http://www.ocf.berkeley.edu/~wwu/YaBBImages/avatars/run_in_box.gif">

Ospite

Messaggio da Ospite » 01 gen 1970, 01:33

<!-- BBCode Quote Start --><TABLE BORDER=0 ALIGN=CENTER WIDTH=85%><TR><TD><font size=-1>Quote:</font><HR></TD></TR><TR><TD><FONT SIZE=-1><BLOCKQUOTE>
<BR>On 2004-01-11 12:53, andrea84 wrote:
<BR>Ciao a tutti!
<BR>
<BR>Per quanto riguarda il primo vorrei sapere se sono sulla buona strada:
<BR>allora abbiamo la nostra eq:
<BR>
<BR>n^2+(n+1)^2=k^2 con k numero intero
<BR>
<BR>chiamiamo n=2ab, n+1=a^2-b^2 e k=a^2+b^2, (terne pitagoriche) dunque se troviamo tutti gli a e b interi tali che 2ab=a^2-b^2-1 allora abbiamo finito(credo).
<BR>Dunque...a^2-b^2-2ab-1=0 consideriamola come un\'equazione di secondo grado in a da cui a=(b^2+-sqrt(2b^2+1)) ora poichè a è intero 2b^2+1 deve essere un quadrato, abbiamo quindi 2b^2+1=q^2 (1) (q intero) che è un\'equazione di Pell con soluzione minima (q=17 e b=12), da qui applicando la formula risolutiva troviamo la forma generale delle soluzioni della (1) .
<BR>Fatto questo possiamo trovare la forma generale delle a e quindi facendo le dovute considerazioni sul fatto che n<200 dovremmo poter tirare fuori qualcosa no?
<BR>
<BR>Non siate troppo pesanti con gli insulti please! <IMG SRC="images/forum/icons/icon_cool.gif">
<BR>
<BR>Ciao
<BR></BLOCKQUOTE></FONT></TD></TR><TR><TD><HR></TD></TR></TABLE><!-- BBCode Quote End -->
<BR>
<BR>
<BR>l\'ho letto un po\' il fretta perche\' devo scappare a studiare ma se sei giunto a Pell dovrebbe essere corretto..magari sviluppa un attimo e poi vediamo..
<BR>stasera ti faccio sapere meglio!
<BR>..per adesso, nessun insulto!!!
<BR>ciao
<BR>-f-

dieciottantunesimi
Messaggi: 218
Iscritto il: 01 gen 1970, 01:00
Località: (0;1/5)

Messaggio da dieciottantunesimi » 01 gen 1970, 01:33

D\'accordo con Franc, ti ho dato le due terne per farti un pò di luce sul sentiero.
<img src="http://www.ocf.berkeley.edu/~wwu/YaBBImages/avatars/run_in_box.gif">

Ospite

Messaggio da Ospite » 01 gen 1970, 01:33

<!-- BBCode Quote Start --><TABLE BORDER=0 ALIGN=CENTER WIDTH=85%><TR><TD><font size=-1>Quote:</font><HR></TD></TR><TR><TD><FONT SIZE=-1><BLOCKQUOTE>
<BR>On 2004-01-11 13:16, dieciottantunesimi wrote:
<BR>Ciao Franc, vorrei un chiarimento sul problema dei triangoli. Sono triangoli eroniani se non ricordo male la definizione. Il fatto è: cosa intendi per interi consecutivi? Perchè ora come ora, trattandosi di un eq. diofantina, mi sembra impossibile, ad occhio, che esistano. Grazie.
<BR>
<BR>Credo però davvero di non aver capito la formulazione del problema.
<BR>
<BR>[ Questo Messaggio è stato Modificato da: dieciottantunesimi il 11-01-2004 13:24 ]
<BR></BLOCKQUOTE></FONT></TD></TR><TR><TD><HR></TD></TR></TABLE><!-- BBCode Quote End -->
<BR>
<BR>la strada giusta e\' proprio erone!!
<BR>...per interi consecutivi io intendevo che x, (x+1), (x+2) sono i lati del triangolo...
<BR>ciao!
<BR>-f-
<BR>

dieciottantunesimi
Messaggi: 218
Iscritto il: 01 gen 1970, 01:00
Località: (0;1/5)

Messaggio da dieciottantunesimi » 01 gen 1970, 01:33

Per chi (compreso il mio vero io) ha voglia di fare più o meno lo stesso lavoro che sta facendo Andrea con le terne pitagoriche del primo problema, questa volta per il secondo problema ricordo che le parametriche dei tre lati nella formula di Erone per triangoli a lati interi sono:
<BR>a= n(m^2 + n^2)
<BR>b= m(n^2 +k^2)
<BR>c= (m+n) (mn-k)
<BR>Buon viaggio!
<img src="http://www.ocf.berkeley.edu/~wwu/YaBBImages/avatars/run_in_box.gif">

Bloccato