Equazione differenziale

Vuoi proporre i tuoi esercizi? Qui puoi farlo!!

Moderatore: tutor

J4Ck202
Messaggi: 196
Iscritto il: 01 gen 1970, 01:00
Località: Pisa

Messaggio da J4Ck202 » 01 gen 1970, 01:33

Trovare le f(x) che soddisfano
<BR>
<BR>f(x) ^ f\'(x) = e x
<BR>
<BR>

publiosulpicio
Messaggi: 774
Iscritto il: 01 gen 1970, 01:00

Messaggio da publiosulpicio » 01 gen 1970, 01:33

Il secondo membro vuol dire e*x o per caso e^x?

J4Ck202
Messaggi: 196
Iscritto il: 01 gen 1970, 01:00
Località: Pisa

Messaggio da J4Ck202 » 01 gen 1970, 01:33

e*x

publiosulpicio
Messaggi: 774
Iscritto il: 01 gen 1970, 01:00

Messaggio da publiosulpicio » 01 gen 1970, 01:33

Non potresti dare un aiutino... io, riscrivendo l\'equazione trovo e^(f\'(x)*ln(f(x)))=e^(1+lnx) quindi f\'(x)*ln(f(x))=1+lnx integrando rispetto a x da entrambe le parti si ha f(x)(ln(f(x))-1)=xlnx ma questa come cavolo la risolvo in f(x)?????

Mathema
Messaggi: 124
Iscritto il: 01 gen 1970, 01:00
Località: Torino

Messaggio da Mathema » 01 gen 1970, 01:33

Bisogna trasformare f\'(x) in dy/dx, e scrivere per (questo per maggiore agilità di calcolo) y anzichè f(x). quindi abbiamo lny*dy/dx=1+lnx. moltiplicando i membri per dx otteniamo lny dy = (1+lnx) dx. Ora possiamo integrare, da una parte rispetto a y e dall\'altra rispetto a x, ottenendo y(lny-1)= xlnx, ma da questo punto in poi non ho la minima idea su come fare ad asplicitare l\'equazione, nè in x nè in y... anzi forse non è nemmeno possibile, almeno che non abbia sbagliato qualche calcolo.
<BR>

publiosulpicio
Messaggi: 774
Iscritto il: 01 gen 1970, 01:00

Messaggio da publiosulpicio » 01 gen 1970, 01:33

Esattamente la stessa cosa che ottengo io, secondo me non è possibile esplicitare la funzione, anche se essa esiste, è quella che soddisfa la condizione scritta da noi.

Mathema
Messaggi: 124
Iscritto il: 01 gen 1970, 01:00
Località: Torino

Messaggio da Mathema » 01 gen 1970, 01:33

Ups..., scusa Publio, ma davvero non mi ero accorto che avevi già scritto la stessa cosa prima di me,...vabbè, pazienza. Cmq hai ragione, non è esplicitable.
<BR>A proposito di equazioni differenziali, sapreste risolvere unproblema del genere? Io il metodo per risolverlo me lo sono inventato da solo, ma forse è qualcosa che si insegna all\'università, non so.
<BR>Cmq, ecco il problema:
<BR>Dato il fascio di curve di equazione y=k/x, trovare un secondo fascio di curve tali che ciascuna di esse sia perpendicolare ad ogni curva del primo fascio.

publiosulpicio
Messaggi: 774
Iscritto il: 01 gen 1970, 01:00

Messaggio da publiosulpicio » 01 gen 1970, 01:33

Meglio cancellare...<BR><BR>[ Questo Messaggio è stato Modificato da: publiosulpicio il 21-04-2003 17:46 ]

DD
Messaggi: 644
Iscritto il: 01 gen 1970, 01:00
Località: Pisa, talvolta Torino

Messaggio da DD » 01 gen 1970, 01:33

sono sicuro che se s\'incontrassero sarebbero perpendicolarissime
[img:2sazto6b]http://digilander.iol.it/daniel349/boy_math_md_wht.gif[/img:2sazto6b]

publiosulpicio
Messaggi: 774
Iscritto il: 01 gen 1970, 01:00

Messaggio da publiosulpicio » 01 gen 1970, 01:33

mmm... ho capito... sarà il caso di cancellare il messaggio di prima...

DD
Messaggi: 644
Iscritto il: 01 gen 1970, 01:00
Località: Pisa, talvolta Torino

Messaggio da DD » 01 gen 1970, 01:33

Non è necessario... l\'idea è giusta, solo in questo caso non funziona. Prova a traslarlo (il fascio ruotato)
[img:2sazto6b]http://digilander.iol.it/daniel349/boy_math_md_wht.gif[/img:2sazto6b]

publiosulpicio
Messaggi: 774
Iscritto il: 01 gen 1970, 01:00

Messaggio da publiosulpicio » 01 gen 1970, 01:33

Bhè, almeno di una cosa sono sicuro, la retta y=x è perpendicolare a tutte le curve del fascio...

publiosulpicio
Messaggi: 774
Iscritto il: 01 gen 1970, 01:00

Messaggio da publiosulpicio » 01 gen 1970, 01:33

Il fascio hx soddisfa la richiesta, come è facile verificare derivando le due funzioni.

publiosulpicio
Messaggi: 774
Iscritto il: 01 gen 1970, 01:00

Messaggio da publiosulpicio » 01 gen 1970, 01:33

Invece nel fascio di cubiche x^3/(3k) ogni cubica è perpendicolare alla corrispondente iperbole (con lo stesso k), ma non alle altre.

DD
Messaggi: 644
Iscritto il: 01 gen 1970, 01:00
Località: Pisa, talvolta Torino

Messaggio da DD » 01 gen 1970, 01:33

Ritiro anch\'io quello che ho detto... la rotazione funziona solo per curve per l\'origine, nell\'origine (o nel centro della rotazione se diverso da O, è lo stesso)
<BR>
<BR>Devi semplicemente avere il coefficiente angolare di un fascio =-1/il c.a. dell\'altro fascio, che viene x³/3k
[img:2sazto6b]http://digilander.iol.it/daniel349/boy_math_md_wht.gif[/img:2sazto6b]

Bloccato