Lemma di Zorn + Axiom of choice

Qui si parla di libri, film, fumetti, documentari, software di argomento matematico o scientifico.
Rispondi
Avatar utente
lama luka
Messaggi: 326
Iscritto il: 05 feb 2009, 22:21
Località: cittadino del mondo

Lemma di Zorn + Axiom of choice

Messaggio da lama luka » 28 lug 2011, 15:30

Intanto mi scuso perchè non sono esattamente sicuro che la sezione sia quella giusta...

Secondo, avrei una domanda: durante i corsi ci siamo soffermati sul lemma di zorn e l'assioma della scelta e nel dimostrarne l'equivalenza il prof ha dimostrato solo l'implicazione lemma->assioma, dicendo che l'altra era relativamente difficile; siccome mi sono incuriosito ho cercato in su internet anche l'altro pezzo della dimostrazione, ma non sono riuscito a trovare niente di valido (anzi, non ho trovato niente..).. Qualcuno potrebbe aiutarmi in questa 'quest'??

Grazie mille !
Non siamo mica qui a raddrizzare banane col culo !

è Ragionevole!

44 gatti [tex]\equiv 2 \pmod{6}[/tex]

E questo come lo risolvo?-L.Lamanna,G.Grilletti (2009)
Tre anni di quaestio copernicana - C.Càssola, F.M.Antoniali, L.Lamanna (2012)
Cinque anni di Copernicus Math Race - L.Lamanna (2016)

[tex]!n=n! \sum_{k=0}^n \frac{(-1)^k}{k!}[/tex]

EvaristeG
Site Admin
Messaggi: 4503
Iscritto il: 01 gen 1970, 01:00
Località: Roma
Contatta:

Re: Lemma di Zorn + Axiom of choice

Messaggio da EvaristeG » 28 lug 2011, 16:01

L'altro pezzo non è lungo, è solo complicato da capire ... io te lo scrivo, ma non te lo spiego XD.

Prendi un insieme $X$ parzialmente ordinato da $<$ dove ogni catena ha un maggiorante. Definisci $f(x)=\{y\in X\ \vert\ x<y\}\in \mathcal{P}(X)$ e poni $f(X)=\{f(x)\ \vert\ x\in X\}$. Un elemento è massimale se e solo se $f(x)=\emptyset$. Supponiamo che non esista. Allora esiste una funzione di scelta $g:f(X)\to X$, quindi una $g$ tale che $g(f(x))\in f(x)$ per ogni $f(x)\in f(X)$, da cui $x<g(x)$.

Ora, per induzione transfinita, definiamo
$g_0(f(x))=x$
$g_{\alpha+1}(f(x))=g(f(g_\alpha(f(x))))$
per ogni ordinale $\alpha$. Se poi $\beta$ è un ordinale limite poniamo
$g_\beta(f(x))=y$
con $y$ un maggiorante della catena $\{g_\gamma(f(x))\}_{\gamma<\beta}$.

Ponendo $h(\alpha)=g_\alpha(f(x))$ per un qualche fissato $x\in X$, otteniamo una mappa da $\mathrm{Ord}$ a $X$. Si vede che, se $\alpha<\beta$, allora $h(\alpha)<h(\beta)$, quindi la mappa $h$ è iniettiva. Ma allora gli ordinali sarebbero un sottoinsieme di $X$, il che non è possibile, perché gli ordinali sono una classe e non un insieme. Quindi ci deve essere $x\in X$ tale che $f(x)=\emptyset$, ovvero un elemento massimale.

Avatar utente
lama luka
Messaggi: 326
Iscritto il: 05 feb 2009, 22:21
Località: cittadino del mondo

Re: Lemma di Zorn + Axiom of choice

Messaggio da lama luka » 28 lug 2011, 19:56

grazie mille :) lo tradurrò io ^^
Non siamo mica qui a raddrizzare banane col culo !

è Ragionevole!

44 gatti [tex]\equiv 2 \pmod{6}[/tex]

E questo come lo risolvo?-L.Lamanna,G.Grilletti (2009)
Tre anni di quaestio copernicana - C.Càssola, F.M.Antoniali, L.Lamanna (2012)
Cinque anni di Copernicus Math Race - L.Lamanna (2016)

[tex]!n=n! \sum_{k=0}^n \frac{(-1)^k}{k!}[/tex]

Rispondi

Chi c’è in linea

Visitano il forum: Nessuno e 1 ospite