Caccia all'errore

Qui si parla del + e del -. Se per colpa della matematica ti hanno bandito dalla birreria, qui puoi sfogarti.
Rispondi
Avatar utente
Ratman98
Messaggi: 122
Iscritto il: 24 giu 2014, 13:52
Località: Battipaglia(Sa)

Caccia all'errore

Messaggio da Ratman98 » 11 apr 2015, 17:17

Esiste p(x), polinomio, tale che p(n)= 2^n per ogni n naturale? Dimostro che non esiste:
innanzitutto definiamo un altro polinomio q(x), tale che q(y)=2^y per ogni y reale. Noto che ogni n è anche un y e che quindi i due polinomi assumono lo stesso valore per infiniti y distinti(cioè questi y sono sempre in numero superiore al grado di p(x) ); per il principio di identità dei polinomi p(x)=q(x). Ora mi accorgo che q(x), per come l'ho definito, non ha radici complesse(vedasi funzione esponenziale), il che contraddice il teorema fondamentale dell'algebra; ossia, q(x) non è un polinomio come non lo è p(x). Vi sfido a trovare l'errore\i presente\i nella dimostrazione(perché credo ce ne siano parecchi). 8)

Talete
Messaggi: 660
Iscritto il: 05 giu 2014, 13:47
Località: Riva del Garda

Re: Caccia all'errore

Messaggio da Talete » 11 apr 2015, 17:41

Errore 1: non hai postato né nella sezione algebra né nella sezione TdN ;) Non ritieni che questo problema e/o la tua soluzione siano abbastanza degni di essere postati in una delle due sezioni citate? Io credo di sì :)

Errore 2: non devi partire dal presupposto che hai fatto parecchi errori, altrimenti ti abbatti! Suvvia, un po' di autostima! ;) ;)
"Sei il Ballini della situazione" -- Nikkio
"Meriti la menzione di sdegno" -- troppa gente
"Sei arrivato 69esimo? Ottima posizione!" -- Andrea M. (che non è Andrea Monti, come certa gente pensa)
"Se ti interessa stanno inventando le baricentriche elettroniche, che dovrebbero aiutare a smettere..." -- Bernardo

Avatar utente
Ratman98
Messaggi: 122
Iscritto il: 24 giu 2014, 13:52
Località: Battipaglia(Sa)

Re: Caccia all'errore

Messaggio da Ratman98 » 11 apr 2015, 18:37

Talete, il tuo intervento non può che farmi piacere :D , ma credo che tu abbia frainteso le mie ragioni. Se non ho postato il problema nella sezione di algebra,è perché per ora non mi interessava la soluzione(è un problema proposto in uno degli stage senior basic 2014 e mi pare sia risolto in un video), quanto piuttosto se la mia soluzione era corretta. In particolare credo di aver commesso qualche errore e mi sembra una bella sfida cercarlo, ma questa attività di ricerca non rientra a pieno titolo in nessuna sezione, quindi l'ho postato qui perché mi sembrava una sorta di digressione dagli argomenti topici del forum; inoltre questa soluzione l'ho trovata per intuizione:se ho dubitato è stato rispetto all'intuizione e non rispetto alle mie capacità. Se mi sono dilungato tanto è perché ho apprezzato il fatto che, Talete, ti "preoccupassi" per me e ho voluto chiarire. Ora, voglio tutti a criticare la mia soluzione(ma nel senso kantiano :D ).
P.S.: perchè avrei dovuto spostarlo in Tdn?

Talete
Messaggi: 660
Iscritto il: 05 giu 2014, 13:47
Località: Riva del Garda

Re: Caccia all'errore

Messaggio da Talete » 11 apr 2015, 19:00

Boh, secondo me avresti comunque dovuto metterlo in algebra: si può comunque imparare dagli errori degli altri. Lascia perdere la TdN, a volte (= spesso) sparo scemenze ;)

Comunque, la soluzione mi sembra corretta. Mi sembra che ai tempi io l'avessi fatto con l'interpolazione di Lagrange, però anche così sembra andare bene. Aspetto però il parere degli "esperti"...
"Sei il Ballini della situazione" -- Nikkio
"Meriti la menzione di sdegno" -- troppa gente
"Sei arrivato 69esimo? Ottima posizione!" -- Andrea M. (che non è Andrea Monti, come certa gente pensa)
"Se ti interessa stanno inventando le baricentriche elettroniche, che dovrebbero aiutare a smettere..." -- Bernardo

fph
Site Admin
Messaggi: 3325
Iscritto il: 01 gen 1970, 01:00
Località: in giro
Contatta:

Re: Caccia all'errore

Messaggio da fph » 11 apr 2015, 20:16

La soluzione purtroppo non è corretta: $q(x)=2^x$ non è un polinomio (perché i polinomi sono definiti come le "cose" della forma $\sum_{i=0}^d a_i x^i$, e un esponenziale non lo è). Quindi non vale per $q(x)$ il principio di identità dei polinomi (e neppure il teorema fondamentale dell'algebra). Pensa per esempio a questo altro controesempio: $q(x) = \sin 2\pi x$ e $p(x)=0$ sono tali che $q(n)=p(n)$ per ogni $n\in\mathbb{Z}$, ma non sono uguali.
--federico
[tex]\frac1{\sqrt2}\bigl(\left|\text{loves me}\right\rangle+\left|\text{loves me not}\right\rangle\bigr)[/tex]

Avatar utente
Ratman98
Messaggi: 122
Iscritto il: 24 giu 2014, 13:52
Località: Battipaglia(Sa)

Re: Caccia all'errore

Messaggio da Ratman98 » 12 apr 2015, 11:17

Grazie fph. In effetti la mia dimostrazione dice(schematizzando) che se A esistesse sarebbe uguale a qualcosa che non esiste e quindi non esisterebbe. L'errore sta nel fatto che non è possibile dire uguali due cose, se si sa che una delle due( il mio q(x) ) non esiste, neanche con il principio di identità dei polinomi :lol: .

Rispondi

Chi c’è in linea

Visitano il forum: Nessuno e 3 ospiti