Identità di Fibonacci

Cosa sono il pigeonhole e l'induzione? Cosa dice il teorema di Ceva? 1 è un numero primo?
Rispondi
Spider
Messaggi: 147
Iscritto il: 01 gen 1970, 01:00
Località: San Cono (CT)
Contatta:

Identità di Fibonacci

Messaggio da Spider » 15 mar 2005, 21:55

Posto un'identità tra le mie preferite, e che può essere utile qualche volta:

$ (a^2 + b^2)(c^2 + d^2) = (ac \pm bd)^2 + (ad \mp bc)^2 $

Essa dimostra che il prodotto di due numeri rappresentabili come somma di due quadrati è rappresentabile come somma di due quadrati, e per questo motivo risulta utile in teoria dei numeri (anche se può essere applicata anche ad altre situazioni, ovviamente... leggete le dispense del Poloni per credere :wink: ). Mnemonicamente, posto $ z = a + ib $ e $ w = c + id $, l'identità esprime il fatto che il valore assoluto del prodotto di due numeri complessi è uguale al prodotto dei valori assoluti:

$ \mid zw\mid = \mid z\mid \mid w\mid $

Come curiosità (non credo che possa mai servire per un problema olimpico), riporto anche un'identità analoga con quattro quadrati, attribuita a Leonhard Euler:

$ (a_1^2+a_2^2+a_3^2+a_4^2)(b_1^2+b_2^2+b_3^2+b_4^2) =\, $
$ =(a_1 b_1-a_2 b_2 - a_3 b_3 - a_4 b_4)^2 + (a_1 b_2 + a_2 b_1 + a_3 b_4 - a_4 b_3)^2\, $
$ +\,(a_1 b_3 - a_2 b_4 + a_3 b_1 + a_4 b_2)^2 + (a_1 b_4 + a_2 b_3 - a_3 b_2 + a_4 b_1)^2\, $

Bella vero? :)

Salvatore

Simo_the_wolf
Moderatore
Messaggi: 1036
Iscritto il: 01 gen 1970, 01:00
Località: Pescara

Messaggio da Simo_the_wolf » 15 mar 2005, 23:38

Io direi che sia la prima sia la seconda siano utili.... Con la seconda si può dimostrare che tutti i numeri naturali sono rappresentabili come somma di 4 quadrati di interi e direi che non è poco...

Spider
Messaggi: 147
Iscritto il: 01 gen 1970, 01:00
Località: San Cono (CT)
Contatta:

Messaggio da Spider » 15 mar 2005, 23:42

Indubbiamente, ma per la seconda non mi viene in mente un problema "olimpico" in cui se ne possa fare uso.

Ciao,
Salvatore

MindFlyer

Messaggio da MindFlyer » 16 mar 2005, 00:16

Simo_the_wolf ha scritto:Io direi che sia la prima sia la seconda siano utili.... Con la seconda si può dimostrare che tutti i numeri naturali sono rappresentabili come somma di 4 quadrati di interi e direi che non è poco...
In che modo?

Rispondi