Polinomi Ciclotomici

Cosa sono il pigeonhole e l'induzione? Cosa dice il teorema di Ceva? 1 è un numero primo?
Rispondi
Saro00
Messaggi: 101
Iscritto il: 27 mag 2015, 10:52
Località: Provincia di Milano

Polinomi Ciclotomici

Messaggio da Saro00 » 26 nov 2015, 16:25

Ciao a tutti!
Nella risoluzione di molti problemi ho trovato abbastanza utile usare i polinomi ciclotomici.
So cosa sono; per intenderci, so più o meno tutto quello che si trova qua https://en.wikipedia.org/wiki/Cyclotomic_polynomial e quello che è stato detto al Senior Basic di quest'anno (anche se non ci sono andato :lol: ).
Volevo che qualche pro del forum scrivesse tutti i fatti noti riguardanti questi celebri polinomi che si possono usare nelle gare.
Ne scrivo uno io.

Lemma 1: Sia $ p $ un primo. Gli unici primi $ q $ che dividono $ \Phi_p $ sono $ p $ e i primi congrui a $ 1 $ modulo $ p $.

Dimostrazione: La lascio a voi.

Problemi relativi: viewtopic.php?f=15&t=19678, viewtopic.php?f=15&t=19540


Affinché questa pagina continui, invoco EvaristeG, fph e darkcrystal.
Un giorno di questi mi metteranno in prigione per aver stuprato troppi problemi. 8)

Talete
Messaggi: 665
Iscritto il: 05 giu 2014, 13:47
Località: Riva del Garda

Re: Polinomi Ciclotomici

Messaggio da Talete » 26 nov 2015, 17:03

So di essere il solito guastafeste ma...

viewtopic.php?f=15&t=13156&p=108876 non era abbastanza bello?
"Sei il Ballini della situazione" -- Nikkio
"Meriti la menzione di sdegno" -- troppa gente
"Sei arrivato 69esimo? Ottima posizione!" -- Andrea M. (che non è Andrea Monti, come certa gente pensa)
"Se ti interessa stanno inventando le baricentriche elettroniche, che dovrebbero aiutare a smettere..." -- Bernardo

Saro00
Messaggi: 101
Iscritto il: 27 mag 2015, 10:52
Località: Provincia di Milano

Re: Polinomi Ciclotomici

Messaggio da Saro00 » 26 nov 2015, 17:11

Scusa, avendo cercato solo in "Glossario e teoria di base" non l'avevo vista.
Si può in qualche modo rimuovere il messaggio?
Un giorno di questi mi metteranno in prigione per aver stuprato troppi problemi. 8)

Avatar utente
Drago96
Messaggi: 1114
Iscritto il: 14 mar 2011, 16:57
Località: Provincia di Torino
Contatta:

Re: Polinomi Ciclotomici

Messaggio da Drago96 » 26 nov 2015, 17:16

Il lemma che hai scritto tu vale più in generale: se $p\mid \Phi_n(a)$ per un qualche intero $a$, allora o $p\mid n$ oppure $p\equiv1\pmod n$.
Un fatto carino che deriva da questo è, ad esempio, che per ogni $n$ ci sono infiniti primi nella successione aritmetica $kn+1$.
Tuttavia non mi è parso di vederli così spesso nei problemi (a parte quelli linkati, con la versione debole che si dimostra a mano), però sono innegabilmente affascinanti xD (vedi magie tipo questa)
Dato che non ho voglia di texxare, mi limito a linkare un paio di dispense:
http://www.math.umn.edu/~garrett/m/algebra/notes/08.pdf
http://www.yimin-ge.com/doc/cyclotomic_polynomials.pdf
http://www.lehigh.edu/~shw2/c-poly/several_proofs.pdf (qua si dimostra che sono irriducibili)

EDIT: vabbè, non conoscevo quel post di jordan, lascio lo stesso le dispense
Imagination is more important than knowledge. For knowledge is limited, whereas imagination embraces the entire world, stimulating progress, giving birth to evolution (A. Einstein)

Saro00
Messaggi: 101
Iscritto il: 27 mag 2015, 10:52
Località: Provincia di Milano

Re: Polinomi Ciclotomici

Messaggio da Saro00 » 26 nov 2015, 17:49

Grazie Mille Drago96!
Un giorno di questi mi metteranno in prigione per aver stuprato troppi problemi. 8)

Rispondi

Chi c’è in linea

Visitano il forum: Nessuno e 2 ospiti