notazione sul codominio

Cosa sono il pigeonhole e l'induzione? Cosa dice il teorema di Ceva? 1 è un numero primo?
Rispondi
Avatar utente
balossino
Messaggi: 103
Iscritto il: 20 mag 2011, 19:38

notazione sul codominio

Messaggio da balossino » 24 apr 2012, 15:30

Vi inoltro un dubbio che il mio professore di matematica non è riuscito a risolvere.
Se io scrivo:
$f:\mathbb{R}\longrightarrow \mathbb{R}$
Sto sottintendendo che al variare di x la funzione assume tutti i valori reali, oppure si intende esclusivamente che i valori assunti sono compresi in $\mathbb{R}$? In particolare, visto che i testi di alcuni problemi olimpici usano questa notazione, quale delle due interpretazioni devo usare come standard?
Il mio professore mi ha detto che mettevo il dito nella piaga perché "i matematici non sono riusciti a mettersi d'accordo su questa notazione", e quindi allo stesso modo si può rappresentare indifferentemente l'una o l'altra situazione. Ma il mio professore è un fisico...

Avatar utente
julio14
Messaggi: 1206
Iscritto il: 11 dic 2006, 18:52
Località: Pisa

Re: notazione sul codominio

Messaggio da julio14 » 24 apr 2012, 16:53

La seconda, e per quanto ne so, tutti i matematici che conosco sono d'accordo. Il tuo professore avrà preso un abbaglio. In genere, per dire che la funzione raggiunge tutti i valori in arrivo (cioè è suriettiva) si usa la notazione $ f:X\twoheadrightarrow Y $, e similmente si usa la notazione $ f:X\hookrightarrow Y $ per dire che la funzione è iniettiva (manda valori in partenza diversi in valori in arrivo diversi). Se scrivi semplicemente $ f:X\to Y $ stai semplicemente dicendo che $ f $ è una funzione, senza ulteriori ipotesi.
"L'unica soluzione è (0;0;0)" "E chi te lo dice?" "Nessuno, ma chi se ne fotte"
[quote="Tibor Gallai"]Alla fine, anche le donne sono macchine di Turing, solo un po' meno deterministiche di noi.[/quote]
Non sono un uomo Joule!!!

fph
Site Admin
Messaggi: 3663
Iscritto il: 01 gen 1970, 01:00
Località: in giro
Contatta:

Re: notazione sul codominio

Messaggio da fph » 24 apr 2012, 17:38

Sottoscrivo pienamente; la seconda che hai detto è universalmente accettata.

Già che se ne parla, vale la pena anche di specificare che il primo $\mathbb{R}$ a sinistra della freccia, in tutto il mondo tranne che per un po' di professori di liceo, significa che la funzione è definita per tutti gli $x$ reali, senza eccezione (ad esempio $f(x)=1/x$ non è una funzione da $\mathbb{R}$ a $\mathbb{R}$, perché non è definita per $x=0$).
--federico
[tex]\frac1{\sqrt2}\bigl(\left|\text{loves me}\right\rangle+\left|\text{loves me not}\right\rangle\bigr)[/tex]

Avatar utente
balossino
Messaggi: 103
Iscritto il: 20 mag 2011, 19:38

Re: notazione sul codominio

Messaggio da balossino » 24 apr 2012, 17:43

Grazie mille per la delucidazione :D

Spammowarrior
Messaggi: 282
Iscritto il: 23 dic 2009, 17:14

Re: notazione sul codominio

Messaggio da Spammowarrior » 02 mag 2012, 20:39

fph ha scritto: Già che se ne parla, vale la pena anche di specificare che il primo $\mathbb{R}$ a sinistra della freccia, in tutto il mondo tranne che per un po' di professori di liceo, significa che la funzione è definita per tutti gli $x$ reali, senza eccezione (ad esempio $f(x)=1/x$ non è una funzione da $\mathbb{R}$ a $\mathbb{R}$, perché non è definita per $x=0$).
mi è stato cancellato il post per il down del forum, sadness.
comunque non è vero, vi sono alcuni logici (vedi il libro di hrbacek & jech) che definiscono le funzioni solo con il vincolo che ad uno stesso elemento venga associato al piu' un valore. poi per molte applicazioni uno chiaramente si limita a funzioni definite su tutto l'insieme di partenza (perchè in effetti non è granchè restrittivo).

Rispondi