Indam 2006/2007

Scuola Normale Superiore, Sant'Anna, Indam, etc. Cosa studiare, come prepararsi.
Avatar utente
Ponnamperuma
Messaggi: 411
Iscritto il: 10 lug 2006, 11:47
Località: Torino

Messaggio da Ponnamperuma » 21 set 2006, 16:22

mah... non riesco a seguire il tuo ragionamento, ma sono d'accordo con quanti sostengono la tesi delle dieci diagonali...
Ragioniamo sul tuo rettangolo: ho un rettangolo (che ho messo in orizzontale) suddiviso longitudinalmente in altri 5 rettangolini... questo fa sì che sul lato corto, su cui si incollerebbe la base, ci siano 6 intersezioni. Le ho chiamate dall'alto in basso A B C D E F A, perchè immaginando di arrotolare il rettangolo per ricostruire il prisma i due estremi dei lati corti e i lati lunghi verrebbero a coincidere...
Sull'altro lato corto metto le stesse lettere con l'apice... A' B' ...
Considero il vertice A... non posso congiungerlo nè con B', nè con E', perchè stanno su due facce contenenti A... rimangono C' e D'.
Per B non posso unire C' e A', ma posso unire con D' e E'. Proseguendo così si ha che per ognuno dei 5 vertici di una base si hanno due diagonali possibili, dieci in tutto, e non conto quelle uscenti dai vertici dell'altra base, poichè chiaramente coincidono con le prime... 10 in tutto... Spero di essere stato esauriente! :wink:

EDIT: Scusa phi, sono arrivato tardi, ma il tuo post non compariva ancora! Mi pare che l'idea di fondo sia la stessa! Pazienza! Ciao!

m@zzi
Messaggi: 12
Iscritto il: 21 set 2006, 12:47
Località: Prato

Messaggio da m@zzi » 21 set 2006, 18:30

io ho fatto 8 quesiti bene e 2 errati
tutto il primo problema (ma non so se l'ho dimostrato bene)
il primo punto del secondo
e tutto il terzo (ma gli ultimi due punti li ho inventati più o meno).

leggendo i vostri post, mi sa proprio che starò in basso in graduatoria dato che il mio punteggio verrebbe ad essere inferiore a tutti i vostri...

albert_K
Messaggi: 182
Iscritto il: 10 set 2006, 19:34
Contatta:

Messaggio da albert_K » 21 set 2006, 19:01

Queste dovrebbero essere le soluzioni corrette del questionario con relativa dimostrazione! Mi sono preso la briga di fare questo lavoro anche per impratichirmi con il LaTeX. Per le soluzioni dei problemi credo sia un lavoro un po' più complicato.....magari ha voglia di farlo qualcun altro! :D


1. Probabilità di determinare un triangolo rettangolo prendendo a caso tre punti qualsiasi di un 40-agono regolare.

Dato un qualsiasi $ $n $- agono regolare, $ $n $ pari, $ $n>2 $.
I diversi modi di prendere a caso tre punti a caso su $ $n $ punti, sono le combinazioni di 40 elementi a 3 a 3, cioè $ $C(n;3) = \binom{n}{3}=\frac{n!}{3!(n-3)!} = \frac{n(n-1)(n-2)}{6} $ triangoli qualunque.
Si considerano le $ $\frac{n}{2} $ diagonali del $ $n $- agono che siano anche diametri della circonferenza circoscritta; per ognuno di essi ci sono quindi $ $n-2 $ punti "buoni" per ottenere un triangolo rettangolo. In totale sono quindi $ $\frac{n(n-2)}{2}. $
Il rapporto fra triangoli rettangoli e triangoli qualunque vale quindi $ $\frac{\frac{n(n-2)}{2}}{\frac{n(n-1)(n-2)}{6}} = \frac{3}{n-1} $.
Se $ $n=40 $, $ $\frac{3}{40-1} = \frac{3}{39} = \frac{1}{13} $.




2. Se un dado è equilibrato, cioè ogni numero può uscire con la stessa probabilità, e un altro dado è truccato, cioè alcuni numero escono con maggiore probabilità di altri, qual è la probabilità che la somma dei numeri usciti dai due dadi sia pari?

Dati i dadi $ d_1 $ (equilibrato) e $ d_2 $ (truccato), le probabilità $ $p $ e $ $d $ che esca un numero pari o dispari sono:
$ $p_{d_1}=\frac{1}{2} $ ;
$ $d_{d_1}=\frac{1}{2} $ ;
$ $p_{d_2}=\frac{1}{n} $ ;
$ $d_{d_2}=1-\frac{1}{n}=\frac{n-1}{n} $ .
La probabilità che la somma dei numeri usciti sia pari è $ $p_{d_1}p_{d_2} + d_{d_1}d_{d_2}=\frac{1}{2n}+\frac{n-1}{2n}=\frac{1+n-1}{2n}=\frac{1}{2} $ .




3. Quante sono le diagonali di un prisma a base pentagonale? (per diagonali si intendono i segmenti che uniscono due vertici non appartenenti a una stessa faccia).

Considerato un qualsiasi prisma a base $ $n $ - agonale, si osserva ognuno degli $ $n $ vertici di una delle due basi è congiungibile con $ $n-3 $ vertici dell'altra base (poichè uno giace sullo stesso spigolo e gli altri due consecutivi a quest'ultimo hanno in comune una faccia).
Esistono quindi $ $n(n-3) $ diagonali.
Se $ $n=5 $ , $ 5(5-3) = 5 X 2 = 10 $ .




4. In una scacchiera $ $5 X 5 $ ci sono $ $25 $ lampadine, tutte spente, ognuna con un interruttore. Premendo un interruttore si fanno cambiare di stato (acceso/spento) la lampadina stessa e tutte le lampadine della stessa riga e della stessa colonna. Qual è il minor numero di interruttori da premere per far accendere tutte le $ $25 $ lampadine?

Non so come generalizzare bene l'argomento, comunque..... si osserva che per accendere tutte le lampadine bisogna fare in modo che su ogni quadratino della scacchiera valga la proprietà la somma degli interruttori premuti sulla stessa riga e sulla stessa colonna (e sul quadratino stesso) è dispari.
Per coprire almeno tutte le righe o tutte le colonne bisogna premere almeno $ $5 $ interruttori, e si verifica facilmente che $ $5 $ interruttori premuti in fila (in qualsiasi riga o colonna) soddisfano la proprietà suddetta.




5. Per quanti interi positivi $ $m $ , $ $m^2 + 3m $ è un quadrato perfetto?

$ $m^2 + 3m = (m+k)^2 $ ;
$ $m^2 + 3m = m^2 + 2mk + k^2 $ ;
$ $3m = 2mk + k^2 $ ;
$ $3m - 2mk = k^2 $ ;
$ $(3 - 2k)m = k^2 $ ;
$ $m = \frac{k^2}{3 - 2k} $ ;
Poichè $ $m>0 $, $ $k<\frac{3}{2} $ ; $ $k=1 $ (unico valore possibile);
$ $m=1 $ è l'unica soluzione per cui $ $1^2 + 3 = 4 = 2^2 $ .




6. $ $ABC $ è la base di un tetraedro $ $ABCV $ i cui spigoli laterali $ $AV $, $ $BV $, $ $CV $ sono congruenti. Dove cade la proiezione ortogonale di $ $V $ sulla base $ $ABC $?

Detta $ $O $ la proiezione ortogonale di $ $V $ sulla base $ $ABC $, le distanze $ $OA $ , $ $OB $ e $ $OC $ sono tutte congruenti per il teorema di pitagora. Il punto equidistante dai vertici di un triangolo è il punto di incotro degli assi dei lati, cioè il circocentro.
Si osserva inoltre che se gli spigoli laterali $ $AV $, $ $BV $, $ $CV $ sono congruenti, allora appartengono alla superficie laterale del cono retto che ha per base la circonferenza circoscritta alla base $ $ABC $. La proiezione ortogonale di $ $V $ cade quindi nel centro $ $O $ di tale circonferenza, ovvero il circocentro di $ $ABC $.




7. In un'isola vivono infiniti abitanti $ $a_0, a_1, a_2, a_3 ...... a_n $, che sono cavalieri (e quindi dicono sempre la verità) oppure sono furfanti (e quindi dicono sempre bugie). Tutti gli abitanti con indice pari dicono "C'è un numero finito di cavalieri". Cosa si può dedurre?

Gli infiniti abitanti con indice pari che dicono "C'è un numero finito di cavalieri" sono necessariamente della stessa specie, poichè dicono la stessa affermazione (Un cavaliere e un furfante non potrebbero affermare la stessa cosa).
Non possono essere tutti cavalieri, perchè altrimenti direbbero una bugia; quindi sono tutti furfanti, e sono infiniti.
Poichè hanno detto una bugia, negando la loro affermazione si ottiene "Non c'è un numero finito di cavalieri", ovvero c'è un numero infinito di cavalieri.
Ci sono quindi infiniti cavalieri e infiniti furfanti (Tutti gli abitanti con indice pari sono furfanti, mentre non tutti gli abitanti con indice dispari sono cavalieri, benchè siano infiniti).




8. Detto $ $a_n $ l'ultima cifra di $ $3^n $ quanto vale la somma $ $S=a_1+a_2+a_3.......+a_{2006} $ ?

$ $a_1=3 $
$ $a_2=9 $
$ $a_3=7 $
$ $a_4=1 $
e elementarmente:
$ $a_{4k+1}=3 $
$ $a_{4k+2}=9 $
$ $a_{4k+3}=7 $
$ $a_{4k+4}=1 $
Poichè $ $2006 : 4 = 501 $ con il resto di $ $2 $,
$ $S=501(3+9+7+1)+3+9=501X20+12= $$ $10020+12=10032 $




9. Alice e Fabio giocano al seguente gioco: uno dei due dice un numero naturale e l'altro deve rispondere con un altro naturale tale che sia la somma di due divisori fattorizzanti il numero detto dall'altro giocatore (e non può essere maggiore). Perde il giocatore che non può dire più nessun numero.
Alice dice $ $45 $, cosa si può dedurre?


Si deduce che vince il giocatore che dice per primo un numero primo (ops :D ).
Se Alice dice $ $45 $, Fabio può rispondere con $ $5+9=14 $ oppure con $ $3+15=18 $ .
- Al $ $14 $ Alice può rispondere solo con $ $2+7=9 $ ; Fabio è obbligato a rispondere con $ $3+3=6 $ ; Alice è obbligata a rispondere con $ $2+3=5 $ e vince.
- Al $ $18 $ Alice può rispondere con $ $2+9=11 $ (e vincerebbe subito), oppure con $ $3+6=9 $, al che Fabio sarebbe obbligato a rispondere con $ $3+3=6 $ e Alice vincerebbe con la scelta obbligata $ $2+3=5 $ .
Quindi Alice vince in ogni caso.




10. Sia una funzione $ $f: \mathbb{N} \rightarrow \mathbb{N} $ crescente (cioè che $ $f(n+1)\ge f(n) $) e tale che $ $f(12)=9 $.
Si sa che vale la proprietà $ $f(f(n))=f(n^2) $. Quanto vale $ $f(2006) $?


$ $f(f(12))=f(12^2) $ ;
$ $f(9)=f(144) $ ;
$ $f(144)\ge f(12) \ge f(9) = 9 $ ; quindi
$ $f(144)=f(12)=f(9)=9 $ , cioè è costante in $ $[9,144] $ ;
$ $f(144^2)=f(9)=9 $ , $ $f(20736)=f(9)=9 $ cioè è costante in $ $[9,20736] $ .
$ $f(2006)=9 $ .




SE TROVATE QUALCHE ERRORE FATEMI SAPERE!!!

Avatar utente
sv
Messaggi: 16
Iscritto il: 05 giu 2006, 22:33

:________________( poverorevopoverome

Messaggio da sv » 21 set 2006, 22:23

ok..
come da premessa ho sbagliato...e anche alla grande!!!

in effetti ha totalmente ragione chi sosiene il numero 10 e si conferma anche graficamente.

Tanto è vero che le diagonali individuano un' iperbololide ad una falda...wow...

ragionando in due dimensioni mi sono ingannato.

azz... per chi lo desiderasse ho anche due immagini che ne illustrano la realizzazione, e ,a dirla tutta, l'idea iniziale era quella di importarle in questo messaggio maaaaaaaaaa...non penso sia possibile,...vero???
e fra l'altro pesano una 5k e l'altra 4k (SUPERqualityGIF!)!

babeh'...checcevoifà!
« This dying is boring »

Avatar utente
Poliwhirl
Messaggi: 383
Iscritto il: 01 gen 1970, 01:00
Località: Napoli

Messaggio da Poliwhirl » 22 set 2006, 01:16

Alloraaaa??? Nessuno si sbilancia con una previsione sul cut-off? Inizio io? Ok... 76 considerando anche le rinunce. Dite la vostra...

Bye,
#Poliwhirl#

m@zzi
Messaggi: 12
Iscritto il: 21 set 2006, 12:47
Località: Prato

Messaggio da m@zzi » 22 set 2006, 08:26

così tanto? :cry:

sqrt2
Messaggi: 142
Iscritto il: 19 gen 2006, 14:43
Località: Genova

Messaggio da sqrt2 » 22 set 2006, 20:03

Previsione sul cut-off? Conoscendo la mia sfiga 77...

Avatar utente
Ani-sama
Messaggi: 418
Iscritto il: 19 feb 2006, 21:38
Località: Hasselt
Contatta:

Messaggio da Ani-sama » 22 set 2006, 21:55

Poliwhirl ha scritto:Alloraaaa??? Nessuno si sbilancia con una previsione sul cut-off? Inizio io? Ok... 76 considerando anche le rinunce. Dite la vostra...

Bye,
#Poliwhirl#
Nah, direi che è un po' troppo pessimistico. Considera che nel 2004 il cutoff, rinunce comprese, era 67,5 o qualcosa del genere...
...

wattia
Messaggi: 8
Iscritto il: 21 apr 2005, 16:33

Messaggio da wattia » 26 set 2006, 16:07

Molti forse lo sapranno già, comunque..........
Ho chiesto all'INDAM notizie sul test e mi hanno risposto che il 2 ottobre si riunirà la commissione per stilare la classifica generale, che sperano di pubblicare sul loro sito già dal giorno dopo........
Per quanto riguarda il cut-off, spero vivamente che sia attorno ai 70 punti o poco più...........

Endorendil
Messaggi: 23
Iscritto il: 23 feb 2005, 23:42
Località: Torino

Messaggio da Endorendil » 26 set 2006, 18:52

certo che se si fa il paragone con i tempi di correzione della normale quelli dell'indam sono di uan lentezza biblica T_T è_é

Torquemada
Messaggi: 35
Iscritto il: 01 gen 1970, 01:00
Località: Alba

Messaggio da Torquemada » 27 set 2006, 11:59

sqrt2 ha scritto:Viste le risposte corrette, quanto pensate di aver preso Poliwhirl,Torquemada,Zena,wattia ecc...?
scusate il ritardo con cui rispondo ma sono stato 15gg in letargo

cmq dei quesiti a risposta multipla ho preso 50 e dei problemi, sperando che gradiscano le mie dimostrazioni, almeno 25-30 punti dovrei averli presi

m@zzi
Messaggi: 12
Iscritto il: 21 set 2006, 12:47
Località: Prato

Messaggio da m@zzi » 03 ott 2006, 13:27

ci sono fuori i risultati


io sono 46esimo e incrocio le dita...

Avatar utente
Poliwhirl
Messaggi: 383
Iscritto il: 01 gen 1970, 01:00
Località: Napoli

Messaggio da Poliwhirl » 03 ott 2006, 13:39

E IORIO LUIGI C'EEEEEEEEEEEEEEEEEEE'!!!!!!!!!!!!!!!!!!!!!!!!! SONO UN INDAMISTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA! YEEEEEEEEEEEEEEEEEEEEEAHHHHHHHHHHHHHHHHHHH!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! SIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII!!!!!!!!!!! SIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII!!!!!!!!! OLLELLEEEEEEEEEEEE OLLALLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!!!!!!!!!!!!! FACCELA VEDEEEEEEEEEE FACCELA TOCCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!!!!!!!!!!! OLLELLEEEEEEEEEEE OLLALLAAAAAAAAAAAAAAAAAA!!!!!!!!
Ok, dopo un mese di sofferenze a chiedermi il punteggio di questo o quest'altro problema, una gioia infinitaaaaaaaaaaaaa SIIIIIIIIIIIIIIIIIIIIIIIIIII
Chiedo scusa per gli eccessivi esulti, ma sto esplodendo dalla felicità!!!!!!

Bye,
#Poliwhirl#

m@zzi
Messaggi: 12
Iscritto il: 21 set 2006, 12:47
Località: Prato

Messaggio da m@zzi » 03 ott 2006, 14:14

Poliwhirl ha scritto:E IORIO LUIGI C'EEEEEEEEEEEEEEEEEEE'!!!!!!!!!!!!!!!!!!!!!!!!! SONO UN INDAMISTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA! YEEEEEEEEEEEEEEEEEEEEEAHHHHHHHHHHHHHHHHHHH!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! SIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII!!!!!!!!!!! SIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII!!!!!!!!! OLLELLEEEEEEEEEEEE OLLALLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!!!!!!!!!!!!! FACCELA VEDEEEEEEEEEE FACCELA TOCCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!!!!!!!!!!! OLLELLEEEEEEEEEEE OLLALLAAAAAAAAAAAAAAAAAA!!!!!!!!
Ok, dopo un mese di sofferenze a chiedermi il punteggio di questo o quest'altro problema, una gioia infinitaaaaaaaaaaaaa SIIIIIIIIIIIIIIIIIIIIIIIIIII
Chiedo scusa per gli eccessivi esulti, ma sto esplodendo dalla felicità!!!!!!

Bye,
#Poliwhirl#

sai mica se c'è qualcuno che rinuncia?
ps: ti hanno già contattato?

Azarus
Messaggi: 580
Iscritto il: 01 gen 1970, 01:00
Località: Pisa

Messaggio da Azarus » 03 ott 2006, 14:27

Bianchi, Caraceni, Trevisan, Maurelli, Benedetti, Chinello rinunciano quasi sicuramente perché normalisti o galileiani.

Buone notizie per il n. 46, quindi :P

Rispondi