Gara Classi Prime

Informazioni sulle gare, come allenarsi, chi corrompere.
Rispondi
Mattysal
Messaggi: 27
Iscritto il: 06 feb 2018, 14:54
Località: Oria (BR)

Gara Classi Prime

Messaggio da Mattysal » 06 feb 2018, 21:54

Oggi si è svolta la Gara delle Prime e vorrei condividere con voi un quesito li presente.

Si consideri il numero 2018201720162015201420132012...10987654321 formato da tutti i numeri in ordine decrescente da 2018 ad 1.
Che resto si ottiene dividendolo per 6? La mia risposta è 3, vorrei capire se ho fatto giusto, illuminatemi! :D

Avatar utente
Lasker
Messaggi: 408
Iscritto il: 02 mag 2013, 20:47
Località: Udine

Re: Gara Classi Prime

Messaggio da Lasker » 07 feb 2018, 01:01

Si è giusto, ma per capire se hai usato un procedimento corretto dovresti postare la tua soluzione visto che beccare il resto giusto su $3$ possibili non è troppo difficile :)
"Una funzione generatrice è una corda da bucato usata per appendervi una successione numerica per metterla in mostra" (Herbert Wilf)

"La matematica è la regina delle scienze e la teoria dei numeri è la regina della matematica" (Carl Friedrich Gauss)

Sensibilizzazione all'uso delle potenti Coordinate Cartesiane, possano seppellire per sempre le orride baricentriche corruttrici dei giovani: cur enim scribere tre numeri quando se ne abbisogna di due?

PRIMA FILA TUTTI SBIRRI!

Mattysal
Messaggi: 27
Iscritto il: 06 feb 2018, 14:54
Località: Oria (BR)

Re: Gara Classi Prime

Messaggio da Mattysal » 07 feb 2018, 08:21

Sono partito dall'escludere 0 2 4 in quanto un numero che termina in 1 diviso per 6 non avrà mai resto pari.

Dato che i numeri sono divisibili per 6 a cinque a cinque e 2016 = 0 mod 6(Uso uguale per dire congruo!)
2016/6=336 gruppi.

Possiamo sommare i moduli 336*(5+4+3+2+1)=5040
Non dimentichiamoci di 2017 e 2018
2017 = 1 mod 6
2018 = 2 mod 6

5040+1+2=5043
5043 = 3 mod 6

matpro98
Messaggi: 431
Iscritto il: 22 feb 2014, 18:42

Re: Gara Classi Prime

Messaggio da matpro98 » 07 feb 2018, 08:36

Giusta!
Ma a noi piace lavorare coi primi (e $6$ non lo è). Lavoriamo allora con $3$. $1+2+3 \equiv 4+5+6 \equiv \dots \equiv 2017+2018 \equiv 0 \pmod{3}$ (sommare i numeri o le singole cifre è la stessa cosa modulo $3$). Quindi hai $N \equiv 1 \pmod{2}$ e $N \equiv 0 \pmod{3}$. Il Teorema Cinese del Resto (studia) ci dice allora che, come hsi detto tu, $N \equiv 3 \pmod{6}$.

Come avrai notato, puoi fare il simbolo di "congruo", tramite il LaTeX. Dacci uno sguardo :wink:

Mattysal
Messaggi: 27
Iscritto il: 06 feb 2018, 14:54
Località: Oria (BR)

Re: Gara Classi Prime

Messaggio da Mattysal » 07 feb 2018, 08:43

Grazie mille!

Mattysal
Messaggi: 27
Iscritto il: 06 feb 2018, 14:54
Località: Oria (BR)

Re: Gara Classi Prime

Messaggio da Mattysal » 07 feb 2018, 08:51

Un altro problema, quanti sono i divisori di 99^9 che sono quadrati perfetti o cubi perfetti?
La mia risposta è stata 55. Illuminatemi :lol:

alessandro tedeschi
Messaggi: 7
Iscritto il: 11 mag 2016, 13:58

Re: Gara Classi Prime

Messaggio da alessandro tedeschi » 08 feb 2018, 22:27

Allora, $99^{9}=3^{18}\cdot 11^{9}$ ; i divisori che sono quadrati perfetti si ottengono come prodotto tra una potenza di esponente pari di 3 e una Potenza con esponente pari di 11 (ricordati di tenere conto che gli esponenti possono essere 0), dunque si sceglieranno in $10\cdot5=50$ modi. Per avere dei cubi gli esponenti dovranno essere multipli di 3, dunque si sceglieranno in $7\cdot4=28$ modi. A questo punto vanno tolti quelli dove gli esponenti sono entrambi multipli di 6 poiché li abbiamo contati due volte; questi si scelgono in $4\cdot2=8$ modi. La risposta sarà $50+28-8=70$

Mattysal
Messaggi: 27
Iscritto il: 06 feb 2018, 14:54
Località: Oria (BR)

Re: Gara Classi Prime

Messaggio da Mattysal » 09 feb 2018, 09:17

Giusto! Non ci avevo pensato, peccato aver perso sei punti.

Rispondi