alegh ha scritto:Dalla disequazione $ AM\geq GM $ ovviamente deduco che $ AM+AM\prime\geq GM+GM\prime $ quindi la relazione vale per la somma.
Sì, in generale, se hai due disuguaglianze $a>b$ e $c>d$ allora è vero che $a+c>b+d$, perchè se prendi $a>b$ e sommi a sinsitra $c$ e a destra $d$, stai aggiungendo una cosa più grande dal lato che è già maggiore, e una cosa più piccola dal lato che era già minore, quindi ottieni una disuguaglianza più larga.
alegh ha scritto: Posso concludere che la relazione vale per ogni caso di somma algebrica?
Se intendi che si può sia sommare che sottrarre, allora no. Sempre nel caso di prima se sottrai ottieni $a-c>b-d$ che equivale a $a+d>b+c$ ma questo non è detto che sia vero: hai a sinistra del maggiore la somma di una cosa grande e una piccola e a destra del maggiore pure.
Esempio: $10>5$ e $10>1$ sottraendo ottieni $10-10>5-1$ falsa
alegh ha scritto:$ AM\geq AM\prime $, quindi $ GM\geq GM\prime $
no, data una n-upla hai tutte le disuguaglianze tra le medie, ma se hai $AM>AM'$, hai solo che $AM>AM'>GM'$ e $AM>GM$. Potresti benissimo avere che $AM>AM'>GM' >GM$ e le disuguaglianze tra le medie sono rispettate.
ad esempio : $AM(1,16)=8,5\geq 6,5=AM(4,9)$ e $GM(1,16)=4<6=GM(4,9)$
(forse era solo un errore di battitura e intendevi $AM>GM$ e $AM'>GM'$, comunque $GM-GM' \leq AM-AM'$ non è sempre vera)