Senior 2015

Informazioni sulle gare, come allenarsi, chi corrompere.
fph
Site Admin
Messaggi: 3613
Iscritto il: 01 gen 1970, 01:00
Località: in giro
Contatta:

Re: Senior 2015

Messaggio da fph » 29 giu 2015, 15:56

rizzo-5 ha scritto:Ciao, nel problema A7 (anche se nei video viene trattato come A8 :lol: ) dicono che l'uguaglianza nella disuguaglianza di Cauchy-Schwarz non vale sempre. Perchè, e quand'è che non vale?
L'uguaglianza in Cauchy-Schwarz vale se (e solo se) esiste un $\lambda$ tale che $a_i = \lambda b_i$ per tutti gli $i$, cioè, se i due vettori $a$ e $b$ sono allineati. (ok, quasi, se lo scrivo con un $\lambda$ solo mi perdo anche $b=0$). Se (per esempio) i $b_i$ sono fissati, riesci sempre a trovare una $n$-upla $a_i$ che fa valere l'uguaglianza. Però, se hai dei vincoli aggiuntivi sugli $a_i$, magari non ci riesci. E se dimostri che $f(x,y,z)\leq M$ ma $M$ non viene mai raggiunto, non hai davvero trovato un massimo, ma magari solo una cosa molto più grande. Quindi uno deve porsi qualche problema...
--federico
[tex]\frac1{\sqrt2}\bigl(\left|\text{loves me}\right\rangle+\left|\text{loves me not}\right\rangle\bigr)[/tex]

Nadal21
Messaggi: 162
Iscritto il: 12 mar 2015, 15:30

Re: Senior 2015

Messaggio da Nadal21 » 29 giu 2015, 16:00

fph ha scritto:
Nadal21 ha scritto:Ho ancora un unico un dubbio nell'A2 :roll: .
Una volta trovato un polinomio $ p(x) $ per cui vale che $ p(i) =2^i $ per $ i=0, \dots, n $ come faccio a dimostrare che non ne può esistere un altro che, invece, vale per$ i=0, \ldots n+1 $?
Guardati bene le condizioni di unicità del polinomio di interpolazione...
Grazie. :D

EvaristeG
Site Admin
Messaggi: 4750
Iscritto il: 01 gen 1970, 01:00
Località: Roma
Contatta:

Re: Senior 2015

Messaggio da EvaristeG » 29 giu 2015, 16:02

alegh ha scritto:Scusate, avevo già posto una domanda simile in un messaggio precedente ma compilando il template per i problemi di ammissione mi viene detto di considerare l'anno di corso che inizierò a settembre e volevo avere conferma che invece per gli esercizi da svolgere si dovesse considerare l'anno di corso appena terminato.
Grazie ancora, chiedo scusa se sembro ripetitivo ma sono nuovo a tutto questo.
Il messaggio con gli esercizi è stato scritto tipo l'8 o il 9 giugno e qualcuno andava ancora a scuola, quindi sì, adesso quello a cui si riferisce quel post è l'anno di corso che avete terminato di frequentare.
Nadal21 ha scritto:Ho ancora un unico un dubbio nell'A2 :roll: .
Una volta trovato un polinomio $ p(x) $ per cui vale che $ p(i) =2^i $ per $ i=0, \dots, n $ come faccio a dimostrare che non ne può esistere un altro che, invece, vale per$ i=0, \ldots n+1 $?
Grazie :D
Beh ... questo dovresti saperlo ed è comunque sottinteso nella soluzione del pdf (ed evidentemente usato). Hint: è una proprietà veramente di base dei polinomi.
rizzo-5 ha scritto:Ciao, nel problema A7 (anche se nei video viene trattato come A8 :lol: ) dicono che l'uguaglianza nella disuguaglianza di Cauchy-Schwarz non vale sempre. Perchè, e quand'è che non vale?
Beh, l'uguaglianza di C.S. si ha quando le due $n$-uple sono proporzionali. A seconda di come sono scritte le due $n$-uple potrebbe essere che non vi sia nessun caso di proporzionalità: $(x+1)x+y^2\leq\sqrt{(x+1)^2+y^2}\sqrt{x^2+y^2}$, ma $x+1=\lambda x$, $y=\lambda y$ non sono possibili contemporaneamente... quindi non c'è nessun caso di uguaglianza.

rizzo-5
Messaggi: 17
Iscritto il: 29 giu 2015, 13:43
Località: Verona

Re: Senior 2015

Messaggio da rizzo-5 » 29 giu 2015, 16:15

fph ha scritto:
rizzo-5 ha scritto:Ciao, nel problema A7 (anche se nei video viene trattato come A8 :lol: ) dicono che l'uguaglianza nella disuguaglianza di Cauchy-Schwarz non vale sempre. Perchè, e quand'è che non vale?
L'uguaglianza in Cauchy-Schwarz vale se (e solo se) esiste un $\lambda$ tale che $a_i = \lambda b_i$ per tutti gli $i$, cioè, se i due vettori $a$ e $b$ sono allineati. (ok, quasi, se lo scrivo con un $\lambda$ solo mi perdo anche $b=0$). Se (per esempio) i $b_i$ sono fissati, riesci sempre a trovare una $n$-upla $a_i$ che fa valere l'uguaglianza. Però, se hai dei vincoli aggiuntivi sugli $a_i$, magari non ci riesci. E se dimostri che $f(x,y,z)\leq M$ ma $M$ non viene mai raggiunto, non hai davvero trovato un massimo, ma magari solo una cosa molto più grande. Quindi uno deve porsi qualche problema...
Grazie!

Gabriele10
Messaggi: 5
Iscritto il: 22 mag 2015, 21:29

Re: Senior 2015

Messaggio da Gabriele10 » 29 giu 2015, 16:19

ma i problemi da mandare dove li trascriviamo? serve un file apposito o va bene anche un documento world?

EvaristeG
Site Admin
Messaggi: 4750
Iscritto il: 01 gen 1970, 01:00
Località: Roma
Contatta:

Re: Senior 2015

Messaggio da EvaristeG » 29 giu 2015, 16:51

Come c'è scritto nel secondo post di questo thread, vogliamo un unico file pdf di dimensioni ragionevoli.
Il meglio sarebbe prepararlo con LaTeX (vedi i primi post di questo thread e i link lì contenuti) ... se proprio ti scappa di farlo in word (e non in world), basta che sia leggibile e chiaro.
Da evitare il più possibile le scansioni di fogli scritti a mano (di solito male).

wall98
Messaggi: 167
Iscritto il: 27 mar 2013, 11:23
Località: Roma

Re: Senior 2015

Messaggio da wall98 » 30 giu 2015, 01:04

Ripropongo la domanda (nonostante da essa sia partito un off topic di tutto rispetto) perchè altrimenti non posso partecipare:

L'alloggio negli alberghi per il senior (nel caso in cui uno vuole alloggiare con gli spesati) funziona come in un campo scuola? Cioè gli studenti sono sotto il controllo (legalmente parlando) degli organizzatori, ai quali i genitori degli studenti minorenni scaricano ogni responsabilità?
Il problema non è il problema, il problema sei tu.

LudoP
Messaggi: 1061
Iscritto il: 18 lug 2007, 22:32
Località: Roma

Re: Senior 2015

Messaggio da LudoP » 30 giu 2015, 02:26

wall98 ha scritto:Ripropongo la domanda (nonostante da essa sia partito un off topic di tutto rispetto) perchè altrimenti non posso partecipare:

L'alloggio negli alberghi per il senior (nel caso in cui uno vuole alloggiare con gli spesati) funziona come in un campo scuola? Cioè gli studenti sono sotto il controllo (legalmente parlando) degli organizzatori, ai quali i genitori degli studenti minorenni scaricano ogni responsabilità?
La domanda e` mal posta, perche' nel caso di un campo scuola non e` vero che i genitori degli studenti minorenni scaricano agli organizzatori ogni responsabilita`.

Nadal21
Messaggi: 162
Iscritto il: 12 mar 2015, 15:30

Re: Senior 2015

Messaggio da Nadal21 » 30 giu 2015, 12:19

EvaristeG ha scritto:
Nadal21 ha scritto:Ho ancora un unico un dubbio nell'A2 :roll: .
Una volta trovato un polinomio $ p(x) $ per cui vale che $ p(i) =2^i $ per $ i=0, \dots, n $ come faccio a dimostrare che non ne può esistere un altro che, invece, vale per$ i=0, \ldots n+1 $?
Grazie :D
Beh ... questo dovresti saperlo ed è comunque sottinteso nella soluzione del pdf (ed evidentemente usato). Hint: è una proprietà veramente di base dei polinomi.
Hai ragione, chiedo scusa. Il fatto è che, con l'algebra, mi sembra di essere andato in tilt. :oops:
Mi sono reso conto di vedere come cose particolari anche fatti semplici che si possono dare per scontati. :D
Comunque, Grazie :D

Talete
Messaggi: 744
Iscritto il: 05 giu 2014, 13:47
Località: Riva del Garda

Re: Senior 2015

Messaggio da Talete » 30 giu 2015, 12:52

Buongiorno,
non sono Cesare(A.k.a. Talete), però uso il suo profilo perché col mio non riesco ad inviare messaggi...
Vorrei porre una domanda riguardo A7: quando asseriamo che per Cauchy-Schwarz l'espressione di cui vogliamo trovare il massimo deve essere minore/uguale il prodotto delle due radici, possiamo dare per scontato che l'uguaglianza sussista per qualche fatto noto? Mi sfugge qualcosa :?
"Sei il Ballini della situazione" -- Nikkio
"Meriti la menzione di sdegno" -- troppa gente
"Sei arrivato 69esimo? Ottima posizione!" -- Andrea M. (che non è Andrea Monti, come certa gente pensa)
"Se ti interessa stanno inventando le baricentriche elettroniche, che dovrebbero aiutare a smettere..." -- Bernardo

Batman
Messaggi: 64
Iscritto il: 27 mag 2015, 13:16

Re: Senior 2015

Messaggio da Batman » 30 giu 2015, 14:20

Scusate, io non ho ancora ben capito una cosa: visto che purtroppo non so niente di latex e non farei in tempo ad impararlo e a scrivere tutte le soluzioni mentre con word non è possibile scrivere molte formule matematiche, posso scrivere le soluzioni a mano su carta e inviarle via posta facendo attenzione che siano leggibili? Casomai, verrei penalizzato in qualche modo?
Grazie

EvaristeG
Site Admin
Messaggi: 4750
Iscritto il: 01 gen 1970, 01:00
Località: Roma
Contatta:

Re: Senior 2015

Messaggio da EvaristeG » 30 giu 2015, 15:30

@non-Talete: non capisco. Cauchy-Schwarz, come ogni disuguaglianza, prevede un caso di uguaglianza. Nel caso in oggetto, non è scontato, bisogna scrivere esplicitamente la scelta di variabili per cui si arriva al valore massimo facendo vedere che le due $n$-uple (coppie, in quel caso) a cui si applica CS possono essere rese una multipla dell'altra scegliendo opportunamente i parametri.

@Batman: con word si possono scrivere varie formule matematiche con Equation Editor, non è bellissimo, ma alla peggio funziona; la spedizione cartacea non è accettata, in quanto le correzioni avvengono in forma elettronica e i correttori non si trovano tutti nella stessa stanza o nella stessa città ... inviare un file pdf con le scansioni di soluzioni scritte a mano è fortemente sconsigliato (sono più difficili da leggere e rischiano di essere quindi corrette peggio).

Talete
Messaggi: 744
Iscritto il: 05 giu 2014, 13:47
Località: Riva del Garda

Re: Senior 2015

Messaggio da Talete » 30 giu 2015, 15:45

EvaristeG ha scritto:@non-Talete: non capisco. Cauchy-Schwarz, come ogni disuguaglianza, prevede un caso di uguaglianza. Nel caso in oggetto, non è scontato, bisogna scrivere esplicitamente la scelta di variabili per cui si arriva al valore massimo facendo vedere che le due $n$-uple (coppie, in quel caso) a cui si applica CS possono essere rese una multipla dell'altra scegliendo opportunamente i parametri.
@EvaristeG: Grazie mille :D , ci penserò su :)
"Sei il Ballini della situazione" -- Nikkio
"Meriti la menzione di sdegno" -- troppa gente
"Sei arrivato 69esimo? Ottima posizione!" -- Andrea M. (che non è Andrea Monti, come certa gente pensa)
"Se ti interessa stanno inventando le baricentriche elettroniche, che dovrebbero aiutare a smettere..." -- Bernardo

Batman
Messaggi: 64
Iscritto il: 27 mag 2015, 13:16

Re: Senior 2015

Messaggio da Batman » 30 giu 2015, 16:05

Grazie per la risposta! Proverò con equation editor allora...se qualcosa non funzionasse stampare il foglio con alcune parti mancanti (simboli o disegni), aggiungere a mano le cose che mancano e scannerizzare il tutto è una cosa troppo brutta per essere corretta? :)

EDIT: o meglio, posso copiare e incollare i disegni del pdf del PreIMO_book nei problemi di geometria? :lol:

wall98
Messaggi: 167
Iscritto il: 27 mar 2013, 11:23
Località: Roma

Re: Senior 2015

Messaggio da wall98 » 30 giu 2015, 20:20

LudoP ha scritto:La domanda e` mal posta, perche' nel caso di un campo scuola non e` vero che i genitori degli studenti minorenni scaricano agli organizzatori ogni responsabilita`.
Allora riformulo:
Le responsabilità che i genitori scaricano agli organizzatori per il senior sono le stesse (o quasi) di quelle che scaricano agli insegnanti per un campo scuola?
Il problema non è il problema, il problema sei tu.

Rispondi