Il vascello spaziale

Meccanica, termodinamica, elettromagnetismo, relatività, ...
Rispondi
Avatar utente
karl
Messaggi: 926
Iscritto il: 01 gen 1970, 01:00

Il vascello spaziale

Messaggio da karl » 14 mag 2005, 14:40

Un vascello spaziale s'avvicina alla Luna seguendo una traiettoria
parabolica che sfiora la superficie lunare.Al momento dell'avvicinamento
massimo entrano in funzione i retrorazzi ed il vascello abborda una traiettoria circolare diventando un satellite lunare.
Calcolare la variazione (negativa) della velocita' del vascello al momento della
frenata.
Risposta:
$ \Delta v=(1- \sqrt (2)) \sqrt( \gamma \frac{M}{R}) $
M,R= massa e raggio della Luna
$ \gamma $= costante della gravitazione universale

ma_go
Site Admin
Messaggi: 1906
Iscritto il: 01 gen 1970, 01:00

Messaggio da ma_go » 15 mag 2005, 11:49

dunque... sfruttiamo le ipotesi: il fatto che si avvicini su un'orbita parabolica suggerisce che $ U+K = 0 $, dove $ U $ e $ K $ sono rispettivamente energia potenziale (gravitazionale, campo gravitazionale lunare) e cinetica.
ma, al momento del massimo avvicinamento, abbiamo $ \displaystyle U = -\gamma\frac{Mm}{R} $.
quindi $ \displaystyle \frac{1}{2}mv^2 = K = -U = \gamma\frac{Mm}{R} $.
dalla relazione precedente, abbiamo $ \displaystyle v = \sqrt{2\gamma \frac{M}{R} $, in cui $ v $ è ovviamente la velocità prima dell'accensione dei razzi.
ora, imponiamo che, dopo l'accensione dei razzi, la velocità $ v' $ del razzo sia tale da mantenerlo in orbita circolare, ovvero tale che l'accelerazione centripeta sia pari all'accelerazione gravitazionale: $ \displaystyle \frac{v'^2}{R} = \gamma \frac{M}{R^2} $, ovvero $ \displaystyle v' = \sqrt{\gamma\frac{M}{R}} $.
quindi $ \displaystyle v' - v = (1-\sqrt2)\sqrt{\gamma\frac{M}{R}} $, come dovevasi dimostrare.

Avatar utente
karl
Messaggi: 926
Iscritto il: 01 gen 1970, 01:00

Messaggio da karl » 15 mag 2005, 12:34

Ringrazio ma_go: le soluzioni semplici e concise sono le mie preferite.

ma_go
Site Admin
Messaggi: 1906
Iscritto il: 01 gen 1970, 01:00

Messaggio da ma_go » 15 mag 2005, 14:06

ehm...
a dir la verità mi pare di essermi dilungato anche troppo...
beh, lasciam stare, non importa... comunque darei un'occhio al rilancio: mi pare un problema assai carino ;)

Rispondi