Problema di meccanica

Meccanica, termodinamica, elettromagnetismo, relatività, ...
Rispondi
eoghan
Messaggi: 8
Iscritto il: 02 gen 2008, 16:23

Problema di meccanica

Messaggio da eoghan » 20 gen 2008, 15:21

Ciao a tutti.
Ho un problema con questo esercizio:
Un velivolo spaziale, di massa m0 = 103 kg, e viaggiante a velocità costante
v = 103 m/s per modificare la propria direzione del moto emette lentamente in direzione ortogonale una massa complessiva mg = 50 kg di gas con una velocità relativa vrel = 104 m/s. Determinare l'angolo di cui sarà variata la traiettoria del velivolo.

La mia soluzione è questa:
La velocità di 103m/s rimane costante.
La velocità ortogonale la trovo con la formula Mdv/dt=VreldM/dt ed è 513m/s
la tangente dell'angolo tra la vecchia direzione e la nuova è: tg(a)=513/103
Applicando l'arcotangente trovo l'angolo desiderato, che è 27.16°

E' giusta come soluzione?
かつて、この世界を愛し
この世界の仲間達と共に過ごした人々へ

BMcKmas
Messaggi: 343
Iscritto il: 13 mar 2006, 16:40

Re: Problema di meccanica

Messaggio da BMcKmas » 21 gen 2008, 19:51

eoghan ha scritto:Ciao a tutti.
.....
Applicando l'arcotangente trovo l'angolo desiderato, che è 27.16°

E' giusta come soluzione?
Non mi sembra, anche se c'è del buono nel tuo ragionamento.
Devi considerare che la massa del razzo si riduce gradualmente durante la manovra.
Così dovresti verificare che il risultato è 38.44° (salvo errori di calcolo).


PS: Per risolvere il problema un integraletto credo sia necessario.
BMcKMas

"Ci sono almeno tre modi per ingannare: la falsità, l'omissione e la statistica" Anonimo saggio

Avatar utente
donchisciotte
Messaggi: 59
Iscritto il: 08 mag 2006, 23:55

Messaggio da donchisciotte » 21 gen 2008, 20:55

Secondo me è da considerare solamente la conservazione della quantità di moto...
Facendoci il disegnino del vettore della quantità di moto iniziale del veivolo $ P_i $ che si scompone nel vettore del gas $ P_g $ e in quello finale del veivolo $ P_f $ vediamo come l'angolo cercato è dato da $ \arctan(\frac{\left | P_g \right |}{\left | P_i \right |}) $ che da un valore di $ 63,89° $. ovviamente essendo la velocità del gas ortogonale a quella del veivolo, non cambierà per il sistema di riferimento.
"Un uomo senza sogni, senza utopie, senza ideali,
sarebbe un mostruoso animale,
un cinghiale laureato in matematica pura"

(Fabrizio De André)

darkcrystal
Messaggi: 695
Iscritto il: 14 set 2005, 11:39
Località: Chiavari

Messaggio da darkcrystal » 21 gen 2008, 22:04

Visto che dicono tutti la loro... ci provo anche io.
Per la conservazione della quantità di moto sull'asse radiale otteniamo, detto $ d \alpha $ l'angolo di deviazione causato dall'emissione della massa $ dM $ otteniamo

$ dM \cos(d \alpha) \cdot 104 - (M-dM) \cdot \sin(d \alpha)*103=0 $.
Trascurando il termine $ dM \cdot d \alpha $ che è prodotto di infinitesimi si ha $ \frac{dM}{M}=\frac{103}{104} tan( d \alpha) $
Siccome $ d \alpha $ è piccolo approssimo $ tan (d \alpha)=d \alpha $ e ho $ \frac{dM}{M}=\frac{103}{104}d \alpha $.

Integro da entrambi i lati (a sx da 103 a 53, a dx da 0 ad alpha finale) e ho $ -\log(\frac{53}{103})=\frac{103}{104} \alpha $, da cui infine $ \alpha \approx -38.439° $

Attendiamo conferme.
"Solo due cose sono infinite: l'universo e la stupidità dell'uomo, e non sono tanto sicuro della prima" - Einstein

Membro dell'EATO

BMcKmas
Messaggi: 343
Iscritto il: 13 mar 2006, 16:40

Messaggio da BMcKmas » 22 gen 2008, 08:52

darkcrystal ha scritto: .........
Attendiamo conferme.
la mia l'avevo data preliminarmente
BMcKMas

"Ci sono almeno tre modi per ingannare: la falsità, l'omissione e la statistica" Anonimo saggio

Avatar utente
Jonny Tendenza
Messaggi: 33
Iscritto il: 09 ago 2007, 19:05
Località: Sotto le coperte assieme a una certa Marialuisa M. vorrei, ma purtroppo, Mede(PV)

Messaggio da Jonny Tendenza » 04 feb 2008, 01:50

darkcrystal ha scritto: Integro da entrambi i lati (a sx da 103 a 53, a dx da 0 ad alpha finale) e ho $ -\log(\frac{53}{103})=\frac{103}{104} \alpha $, da cui infine $ \alpha \approx -38.439° $
Il risultato è corretto però c'è un piccolo errore di scrittura. :?

Se ho:

$ \displaystyle \frac{dM}{M}=\frac{103}{104}d \alpha $

Integrando ambo i membri secondo i limiti, avrò:

$ \displaystyle \int^{53}_{103}{\frac{dM}{M}}=\int^\alpha_0{\frac{103}{104}d \alpha} $

Che calcolata dà:

$ \displaystyle -\log(\frac{103}{53})=\frac{103}{104} \alpha $

E non:

$ \displaystyle -\log(\frac{53}{103})=\frac{103}{104} \alpha $

Comunque, complimenti per la soluzione! :o

Ciao! :D

Rispondi