L'isola: Alberto, Barbara e Cristina

Giochini matematici elementari ma non olimpici.
Rispondi
ngshya
Messaggi: 231
Iscritto il: 26 gen 2010, 19:08
Contatta:

L'isola: Alberto, Barbara e Cristina

Messaggio da ngshya » 27 gen 2010, 14:39

Su un'isola ci sono tre persone: Alberto, Barbara e Cristina.
Si sa che fra di loro ci sono:
- un cavaliere (che dice sempre la verità);
- un furfante (che mente sempre);
- un paggio, che ogni mattina decide se essere sincero o bugiardo per il resto del giorno.
I tre intendono l'italiano ma possono rispondere solo nella loro lingua mu e bu, che significano uno sì e l'altro no (non necessariamente mu=sì e bu=no).
Hai tre domande a disposizione, devi scoprire le loro identità.

Buon divertimento :D

Avatar utente
karlosson_sul_tetto
Messaggi: 1437
Iscritto il: 10 set 2009, 13:21
Località: Napoli

Re: L'isola: Alberto, Barbara e Cristina

Messaggio da karlosson_sul_tetto » 27 gen 2010, 16:38

ngshya ha scritto:I tre intendono l'italiano ma possono rispondere solo nella loro lingua mu e bu
Ma che razza di lingua è con soltanto due parole??!!!???!!!!? :shock: :shock: :?:

P.S:Benvenuto! :D
"Inequality happens"
---
"Chissa se la fanno anche da asporto"

ndp15
Messaggi: 598
Iscritto il: 18 gen 2007, 19:01

Messaggio da ndp15 » 28 gen 2010, 20:05

Con una domanda avrò una risposta da ogni persona o una risposta da una sola persona?

ngshya
Messaggi: 231
Iscritto il: 26 gen 2010, 19:08
Contatta:

Messaggio da ngshya » 28 gen 2010, 20:18

Da una sola, naturalmente quella che vuoi tu.

Avatar utente
SkZ
Messaggi: 3333
Iscritto il: 03 ago 2006, 21:02
Località: Concepcion, Chile
Contatta:

Messaggio da SkZ » 28 gen 2010, 23:06

la classica: "dici la verita'?" ti fa sapere qual e' il si, ma temo non sia conveniente

la domanda "sei il paggio e dici la verita'?" ha risposta costante da parte dei 3
Paladino:N
Farabutto:S
Paggio:S
nel caso peggiore facendola 2 volte individui il Paladino
impara il [tex]~\LaTeX[/tex] e mettilo da par[tex]\TeX~[/tex]

Software is like sex: it's better when it's free (Linus T.)
membro: Club Nostalgici
Non essere egoista, dona anche tu! http://fpv.hacknight.org/a8.php

ndp15
Messaggi: 598
Iscritto il: 18 gen 2007, 19:01

Messaggio da ndp15 » 29 gen 2010, 13:28

Dovrei averlo risolto oggi a scuola, ma prima di postare la soluzione (che non è proprio corta se scritta per bene) dovrei ricontrollare tutto e sapere un fatto su cui poggia l'idea base della soluzione: è corretto supporre che cavaliere e furfante non sappiano se il paggio risponde il vero o il falso?

Avatar utente
SkZ
Messaggi: 3333
Iscritto il: 03 ago 2006, 21:02
Località: Concepcion, Chile
Contatta:

Messaggio da SkZ » 29 gen 2010, 14:01

di solito si, perche' e' piu' difficile :wink:
impara il [tex]~\LaTeX[/tex] e mettilo da par[tex]\TeX~[/tex]

Software is like sex: it's better when it's free (Linus T.)
membro: Club Nostalgici
Non essere egoista, dona anche tu! http://fpv.hacknight.org/a8.php

ndp15
Messaggi: 598
Iscritto il: 18 gen 2007, 19:01

Messaggio da ndp15 » 29 gen 2010, 17:32

Ho scritto la risposta in allegato con il Writer di openoffice sperando di renderla un minimo più chiara con l'utilizzo di tabelle. Ho cercato di ricontrollarla e mi pare corretta, ma questo tipo di problemi sono fatti per farti impazzire, quindi è facile mi sia scappato qualcosa. Inoltre è facile ci sia una soluzione con domande meno arzigogolate, ma queste mi sono venute :)
Allegati
Furfanti,cavalieri e paggi.pdf
(33.48 KiB) Scaricato 222 volte

frank nico
Messaggi: 31
Iscritto il: 13 feb 2010, 12:21
Località: Cerchiara (CS)

Messaggio da frank nico » 13 feb 2010, 14:26

Io vorrei proporre un'altra soluzione in cui credo che le domande siano meno complesse. Inoltre il metodo di ndp15 presuppone che le 3 persone si conoscano tra di loro, in quante nelle domande che pone chiede lo stato delle altre persone, mentre io ho elaborato una soluzione con domande personali che permette di individuare le 3 identità anche se queste 3 persone non si conoscono. Quindi in quanto sono domande personali a ogni domanda seguirà per forza una risposta. Aggiungo il documento in allegato.
Allegati
Documento1.pdf
(6.53 KiB) Scaricato 165 volte

ndp15
Messaggi: 598
Iscritto il: 18 gen 2007, 19:01

Messaggio da ndp15 » 13 feb 2010, 14:57

Occhio che "non necessariamente mu=sì e bu=no"!

frank nico
Messaggi: 31
Iscritto il: 13 feb 2010, 12:21
Località: Cerchiara (CS)

Messaggio da frank nico » 13 feb 2010, 21:34

Hai ragione non ci avevo fatto caso...Questi quesiti sono tremendi..dovrò studiare qualcos'altro..Comunque pure il tuo ragionamento è un pò lacunoso..Nella seconda e nella terza domanda del tuo caso 2 infatti otteniamo risposte differenti come nel caso 5..perchè C che è un furfante direbbe che A non è un cavaliere (quindi bu/mu), e se chiedi ad A se è un cavaliere ti risponde che lo è (quindi mu/bu)..Mi sa tanto che dovremmo invetarci qualche altra cosa..

frank nico
Messaggi: 31
Iscritto il: 13 feb 2010, 12:21
Località: Cerchiara (CS)

Messaggio da frank nico » 16 feb 2010, 20:49

Tenendo conto che non sappiamo quale tra bu e mu significhi sì e quale significhi no ritengo che non esiste alcuna soluzione al quesito.
Indicando con c il cavaliere,con f il furfante e con p il paggio, i possibili casi differenti sono 6 (c,f,p) (c,p,f) (f,c,p) (f,p,c) (p,c,f) (p,f,c). Ponendo tre domande qualsiasi a chiunque si voglia, non è possibile giungere in tutti i casi a individuare le tre identità. Le sequenze delle tre risposte possono essere:

1_____2_____3_____4_____5_____6_____7______8
mu___mu____mu___mu____bu____bu____bu____ bu
mu___mu____bu____bu____bu____bu____mu____mu
mu___ bu____mu___ bu____bu____mu___ bu____ mu

Quindi abbiamo otto possibili sequenze di risposte a prescindere dalle domande e dagli interrogati.
Ma siccome non conosciamo la lingua, il 1° caso e il 5° caso ci sembreranno totalmente equivalenti perchè fare tre domande e ottenere 3 risposte "mu" oppure ottenere tre risposte "bu" è la stessa cosa fin quando non sappiamo cosa vuol dire l'uno e cosa vuol dire l'altro. Ragionamento analogo si può fare con il 2° e il 6° caso, con il 3° e il 7° caso e con il 4° e l'8° caso.
Le sequenze utili che possiamo ottenere sono quindi solamente 4. Esse non sono sufficienti a distinguere in quali dei 6 casi ci troviamo. Cioè con 4 sole possibili risposte si può risolvere un problema che prevede 4 o un numero inferiore di casi, non 6. Le sequenze delle risposte devono essere in numero maggiore o uguale al numero dei casi possibili. Questo è il mio ragionamento e credo che sia corretto. Almeno. Ciò si verifica dal momento che a ogni domanda debba seguire una risposta. Se invece va considerato che gli "intervistati" possono anche non rispondere allora aumentano le possibili sequenze di risposte e quindi, invece di 4, saranno molto più di 6 e la soluzione sarà possibile. Però, siccome suppongo che il problema non considerasse che gli abitanti dell'isola possano non rispondere, penso che non esiste alcuna soluzione. Mi corregga ngshya se è in possesso della soluzione :wink:

ngshya
Messaggi: 231
Iscritto il: 26 gen 2010, 19:08
Contatta:

Messaggio da ngshya » 14 mar 2010, 18:53

http://it.wikipedia.org/wiki/L'indovine ... _del_mondo :D

PS. Fate copia e incolla di tutto l'indirizzo.

Rispondi