quesito di probabilistica facile....

Giochini matematici elementari ma non olimpici.
Rispondi
bestiedda
Messaggi: 213
Iscritto il: 15 nov 2007, 20:20

quesito di probabilistica facile....

Messaggio da bestiedda » 21 nov 2008, 16:05

....nato durante i giochi di archimede

se durante i giochi di Archimede si ha una domanda di cui non si ha idea della risposta (cioè non si è in grado di escludere nessuna delle risposte), è più conveniente sparare a caso o lasciarla in bianco?
marco

Avatar utente
Fedecart
Messaggi: 522
Iscritto il: 09 mar 2008, 22:49
Località: Padova

Messaggio da Fedecart » 21 nov 2008, 16:10

Sparando hai 1quinto di possibilità di fare 5 punti, lasciando in bianco ne fai di certo 1... Quindi credo che sia identico alla fin fine... no?

Avatar utente
Haile
Messaggi: 515
Iscritto il: 30 mag 2008, 14:29
Località: Bergamo

Messaggio da Haile » 21 nov 2008, 16:33

Fedecart ha scritto:Sparando hai 1quinto di possibilità di fare 5 punti, lasciando in bianco ne fai di certo 1... Quindi credo che sia identico alla fin fine... no?
EDITATO
Ultima modifica di Haile il 21 nov 2008, 16:50, modificato 1 volta in totale.
[i]
Mathematical proofs are like diamonds: hard and clear.

[/i]

Avatar utente
Fedecart
Messaggi: 522
Iscritto il: 09 mar 2008, 22:49
Località: Padova

Messaggio da Fedecart » 21 nov 2008, 16:37

No, non ti sbagli... anche se il quesito supponeva io non sapessi rispondere a solo una domanda... Non so dovrei pensarci.
In ogni caso mi chiedo perchè questo topic sia in geometria! =)

bestiedda
Messaggi: 213
Iscritto il: 15 nov 2007, 20:20

naturalmente

Messaggio da bestiedda » 21 nov 2008, 16:38

naturalmente la sezione è sbagliata. scusate mod


cmq Haile mi sa che sbagli. I casi 0,5...25 non sono equiprobabili
marco

Avatar utente
Haile
Messaggi: 515
Iscritto il: 30 mag 2008, 14:29
Località: Bergamo

Re: naturalmente

Messaggio da Haile » 21 nov 2008, 16:48

bestiedda ha scritto:naturalmente la sezione è sbagliata. scusate mod


cmq Haile mi sa che sbagli. I casi 0,5...25 non sono equiprobabili
infatti stavo editando ma poi avete risposto :evil:

Se ne sparo una a caso ho i 4/5 di prendere 0 punti e 1/5 di prenderne 5, in media ne aspetto uno (4/5 * 0 + 1/5 * 5)/1 (quindi equivale a lasciar bianco).

Meglio?
Ultima modifica di Haile il 21 nov 2008, 20:35, modificato 1 volta in totale.
[i]
Mathematical proofs are like diamonds: hard and clear.

[/i]

Avatar utente
Francutio
Messaggi: 1104
Iscritto il: 17 feb 2008, 08:05
Località: Torino

Re: quesito di probabilistica facile....

Messaggio da Francutio » 21 nov 2008, 19:08

bestiedda ha scritto:....nato durante i giochi di archimede

se durante i giochi di Archimede si ha una domanda di cui non si ha idea della risposta (cioè non si è in grado di escludere nessuna delle risposte), è più conveniente sparare a caso o lasciarla in bianco?


secondo me c'è da valutare il fatto che solitamente alcune risposte le puoi escludere (cioè....ai quesiti numero 8, 11, 13e 20 non sai rispondere con certezza...però per ognuno di questi riduci le possibilità a 2-3....forse a questo punto è davvero conveniente sparare a caso....tra quelle che ritieni possibili...)




EDIT: nel caso fosse una sola da sparare o da lasciare in bianco...


lasciando in bianco hai più possibilità (il quadruplo) di aumentare il tuo punteggio....anche se di meno...

anche qui secondo me bisogna fare una valutazione non proprio matematica....

senza considerare quella domanda ritieni di avere 100 punti (numero a caso)

pensi che 100 o 101 basti a passare, anche se al limite (allora forse è meglio tenersi quel punticino buono)

pensi che 100 non basti, ma che 105 potrebbe andare? (allora spari)


cioè....è più una questione filosofica secondo me che matematica :lol:

bestiedda
Messaggi: 213
Iscritto il: 15 nov 2007, 20:20

Messaggio da bestiedda » 21 nov 2008, 20:27

non a caso ho scritto che non si poteva escluderne neanche una
marco

Avatar utente
Francutio
Messaggi: 1104
Iscritto il: 17 feb 2008, 08:05
Località: Torino

Messaggio da Francutio » 21 nov 2008, 21:17

bestiedda ha scritto:non a caso ho scritto che non si poteva escluderne neanche una
xD non avevo letto la precisazione :oops:


vabbè...resta valida la seconda parte allora ^^

Avatar utente
jordan
Messaggi: 3988
Iscritto il: 02 feb 2007, 21:19
Località: Pescara
Contatta:

Messaggio da jordan » 21 nov 2008, 22:25

Rilancio:
Se una classe composta da n "pinco-pallini" va ai giochi di archimede solo per perdere qualche oretta, è vero che il valore atteso delle medie dei quadrati delle differenze dal loro punteggio medio è pari alla media dei quadrati delle differenze dal punteggio medio italiano?

(Si suppone che la maggior parte degli italiani siano pinco-pallini :lol: )
The only goal of science is the honor of the human spirit.

Avatar utente
kn
Messaggi: 508
Iscritto il: 23 lug 2007, 22:28
Località: Sestri Levante (Genova)
Contatta:

Messaggio da kn » 24 nov 2008, 20:46

Matematicamente non so, ma statisticamente è meglio sovrastimare i quadrati
delle differenze:
Qualcuno su Wikipedia ha scritto:Esistono argomenti teorici, soprattutto nell'ambito della stima ovvero nell'ambito della statistica inferenziale, dove è noto solo un campione della popolazione, per rimpiazzare il fattore 1 / n con 1 / (n − 1) nella definizione, ottenendo come nuova definizione:

$ $\sigma_x = \sqrt{\frac{\sum_{i=1}^{n} (x_i-\overline x)^2}{n-1}}$ $

Sostanzialmente, poiché non è nota la media dell'intera popolazione, ma solo una sua stima (la media del campione), bisogna utilizzare n - 1 per ottenere uno stimatore corretto.

Questa correzione al denominatore fa sì che la nuova definizione sia un po' più grande della precedente, correggendo così la tendenza della precedente a sottostimare le incertezze soprattutto nel caso in cui si lavori con pochi dati (n piccolo).[/tex]
Preso da http://it.wikipedia.org/wiki/Deviazione_standard :lol:

Alex89
Messaggi: 366
Iscritto il: 29 gen 2006, 16:57

Messaggio da Alex89 » 25 nov 2008, 00:45

jordan ha scritto:Rilancio:
Se una classe composta da n "pinco-pallini" va ai giochi di archimede solo per perdere qualche oretta, è vero che il valore atteso delle medie dei quadrati delle differenze dal loro punteggio medio è pari alla media dei quadrati delle differenze dal punteggio medio italiano?

(Si suppone che la maggior parte degli italiani siano pinco-pallini :lol: )
Credo la risposta sia no perchè nella media dei quadrati medi italiani ci sono gabriel e salva che da soli alzano considerevolmente tale media :D:D, nonchè la sfilza di $ 5^3 $ e $ 5^3-5=5! $

Avatar utente
jordan
Messaggi: 3988
Iscritto il: 02 feb 2007, 21:19
Località: Pescara
Contatta:

Messaggio da jordan » 26 nov 2008, 21:45

be se gabriel e salva rappresentano qualche outlier positivo, credo sia lecito supporre che di negativi ce ne siano (molti) di piu.. :lol: :lol:
The only goal of science is the honor of the human spirit.

Rispondi