Statistica: popolazione di 100 elementi con media e varia

Analisi, algebra lineare, topologia, gruppi, anelli, campi, ...
Sosuke
Messaggi: 256
Iscritto il: 05 ago 2006, 20:10

Statistica: popolazione di 100 elementi con media e varia

Messaggio da Sosuke » 21 gen 2007, 19:55

ciao a tutti... ho questo problema di metodi statistici e non so come cominciare...

Una popolazione, composta da 100 elementi, ha una media di 60 ed una varianza di 25. Quanti sono gli elementi che sono maggiori 75 e minori di 25


Qualcuno può darmi una mano d'aiuto almeno per iniziare a fare questo esercizio e poi vedo se riesco a continuare da solo caso mai?

Grazie...

Avatar utente
tuvok
Messaggi: 98
Iscritto il: 31 gen 2006, 21:30

Messaggio da tuvok » 22 gen 2007, 11:22

Potrebbe essere ragionevole l'ipotesi che la distribuzione della caratteristica su cui fai la statistica (età, ecc) sia gaussiana, dato che il campione è composto da un numero sufficientemente alto di individui. In questo caso le probabilità (e quindi il numero atteso di individui) le calcoli con un integrale di una gaussiana con media 60 e varianza 25, con gli estremi di integrazione appropriati: $ (-\infty ; 25) $ e $ (75,+\infty) $
Lunga vita e prosperità

Sosuke
Messaggi: 256
Iscritto il: 05 ago 2006, 20:10

Messaggio da Sosuke » 22 gen 2007, 13:32

ehm.. ma qual è la funzione ad integrare?

Avatar utente
tuvok
Messaggi: 98
Iscritto il: 31 gen 2006, 21:30

Messaggio da tuvok » 22 gen 2007, 18:39

La funzione di distribuzione di una gaussiana con media $ \mu $ e varianza $ \sigma^2 $ è
$ \displaystyle p(x)=\frac{1}{\sigma \sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2} $
Non esiste una forma chiusa per l'integrale, i valori numerici al variare degli estremi di integrazione li trovi sulle tavole.
Lunga vita e prosperità

Sosuke
Messaggi: 256
Iscritto il: 05 ago 2006, 20:10

Messaggio da Sosuke » 22 gen 2007, 20:00

ahhhhhhh ok ok... ora provo e ti faccio sapere (ti faccio vedere quello che faccio)... un ultima cosa... sai dirmi come posso trovare sul libro di testo questo argomento?? Con che nome esce... perchè non riesco a trovarlo..

Sosuke
Messaggi: 256
Iscritto il: 05 ago 2006, 20:10

Messaggio da Sosuke » 23 gen 2007, 10:17

Allora... vediamo se faccio giusto....
Ricordando che la media è 60 e la varianza è 25...

$ \displaystyle\int_{-\infty}^{25} p(x)=\frac{1}{5\sqrt{2\pi}}e^{\frac{(x-60)^2}{2*25}} $

e

$ \displaystyle\int_{75}^{+\infty} p(x)=\frac{1}{5\sqrt{2\pi}}e^{\frac{(x-60)^2}{2*25}} $

Mi sorgono 2 domande:
1) Ora con i due valori che trovo che faccio?
2) La mia poolazione è di 100 elementi... quand è che utilizzo quel 100??

P.S.: Nel libro, sotto che argomento esce questo tipo di esercizio solitamene?

Grazie

Avatar utente
tuvok
Messaggi: 98
Iscritto il: 31 gen 2006, 21:30

Messaggio da tuvok » 23 gen 2007, 15:18

I due numeri che ottieni sono due probabilità; per ottenere il numero atteso di individui con quella caratteristica devi rinormalizzarle al numero totale di individui, cioè a 100 (devi moltiplicare quei numeri per 100). Dato che la distribuzione gaussiana è un argomento centrale in statistica dovresti trovare abbastanza informazioni su un qualunque libro che tratti queste cose...
Lunga vita e prosperità

Sosuke
Messaggi: 256
Iscritto il: 05 ago 2006, 20:10

Messaggio da Sosuke » 25 gen 2007, 13:37

Forse è sorto un problema... dei miei colleghi mi hanno detto ceh questo esercizio il prof lo risolveva tramite classi... onestamente io sul libro non ho trovato nula che parli di classi...

Quindi che devo are per risolvere questo esercizio ocme richiede il prof?
Qualcuno ha idea??

Grazie..

EvaristeG
Site Admin
Messaggi: 4760
Iscritto il: 01 gen 1970, 01:00
Località: Roma
Contatta:

Messaggio da EvaristeG » 28 gen 2007, 13:45

Continuo a far presente che questo non è il posto per farsi fare i compiti.

Sosuke
Messaggi: 256
Iscritto il: 05 ago 2006, 20:10

Messaggio da Sosuke » 05 feb 2007, 18:19

Non sto chiedendo di farmi fare i compiti (a parte che non sono compiti)... ma di aiutarmi nel farli.... :!: :wink:

EvaristeG
Site Admin
Messaggi: 4760
Iscritto il: 01 gen 1970, 01:00
Località: Roma
Contatta:

Messaggio da EvaristeG » 05 feb 2007, 19:51

E' lo stesso. Non è un forum di sostegno per universitari.

Sosuke
Messaggi: 256
Iscritto il: 05 ago 2006, 20:10

Messaggio da Sosuke » 05 feb 2007, 22:50

beh... potrei vederla come te se l'esercizio mi servisse per farlo vedere al prof o per un esercizio o un compito un esame... ma siccome è una cosa che mi interessa personalmente.....

Comunque... se qualcuno riesce a darmi qualche aiuto ben venga.... se no è inutile continuare con questa conversazione Off-Topic :wink:

Sosuke
Messaggi: 256
Iscritto il: 05 ago 2006, 20:10

Messaggio da Sosuke » 07 feb 2007, 09:26

Ecco... abbandonando momentaneamente l'idea delle classi che ancora non sono riuscito a capire bene cosa possano centrare con questo esercizio, posto un piccolo accorgimento per "semplificare" la soluzione di questo tipo di esercizio... (deduzione a cui sono arrivato naturalmnete grazie all'aiuto iniziale di tuvok... tra l'altro colgo l'occasione per ringraziarlo)...

Allora... tenendo presente che l'area sottesa dalla gaussiana è uguale a 1, potemmo utilizzare la propabilità contraria anzicchè calcolare due volte lo stesso integrale con estremi diversi, moltiplicare i due risultati per 100 (nel mio caso) e poi sommarli....

dunque la formula dovrebbe essere come segue:

$ p(x) = (1 - \displaystyle\int_{25}^{75} \frac{1}{5\sqrt{2\pi}}e^{\frac{(x-60)^2}{2*25}})*100 $

Spero possa essere d'aiuto a qualcuno che più o meno è nelle stesse mie condizioni :roll:

Ci dovrebbe essere un metodo ancora più semplice (che ancora non so) se dovesi riuscire a scoprirlo posto....

BMcKmas
Messaggi: 343
Iscritto il: 13 mar 2006, 16:40

Re: Statistica: popolazione di 100 elementi con media e vari

Messaggio da BMcKmas » 08 feb 2007, 09:30

Sosuke ha scritto: Una popolazione, composta da 100 elementi, ha una media di 60 ed una varianza di 25. Quanti sono gli elementi che sono maggiori 75 e minori di 25

Grazie...
Sono 0

ciao
BMcKMas

"Ci sono almeno tre modi per ingannare: la falsità, l'omissione e la statistica" Anonimo saggio

Sosuke
Messaggi: 256
Iscritto il: 05 ago 2006, 20:10

Messaggio da Sosuke » 08 feb 2007, 10:06

ehm.... ma come fai a dire che sono 0 ???

Con il procedimento che sto seguendo io (cioè attraverso la gaussiana)... o con quell'altro che non conosco ma che sto cercando?

Rispondi