Teoria degli insiemi

Analisi, algebra lineare, topologia, gruppi, anelli, campi, ...
Rispondi
publiosulpicio
Messaggi: 774
Iscritto il: 01 gen 1970, 01:00

Teoria degli insiemi

Messaggio da publiosulpicio » 17 nov 2005, 23:58

Premetto che mi accontento anche di una risposta intuitiva. Per chi volesse cimentarsi in una risposta rigorosa premetto che intendo tutti i concetti nel senso di Halmos in A naive set theory.
Esiste un insieme $ S $ tale che $ S=\{S\} $ cioé $ S \in S $ e allo stesso tempo $ S $ è l'unico elemento di $ S $?

Corretto il LaTeX. MindFlyer

Avatar utente
Marco
Site Admin
Messaggi: 1331
Iscritto il: 01 gen 1970, 01:00
Località: IMO '93

Messaggio da Marco » 18 nov 2005, 07:43

Vado a memoria e potrei scrivere stupidaggini. Ma mi pare che nelle teorie classiche ci sia qualcosa che vieti per l'appunto un caso del genere con un assioma (di buona fondazione, mi sembra...), che sostanzialmente vieta catene discendenti infinite di appartenenze.

Se c'è bisogno di un assioma, I guess, non sia possibile decidere se esiste o meno tale S nella teoria dei restanti assiomi.

Just my 1+ $ \varepsilon $ pennies...
[i:2epswnx1]già ambasciatore ufficiale di RM in Londra[/i:2epswnx1]
- - - - -
"Well, master, we're in a fix and no mistake."

MindFlyer

Messaggio da MindFlyer » 18 nov 2005, 07:46

Confermo la risposta irreprensibile di Marco.
Per maggiori informazioni si veda QUESTA PAGINA.

CUCU
Messaggi: 40
Iscritto il: 01 nov 2005, 14:55

Re: Teoria degli insiemi

Messaggio da CUCU » 08 gen 2006, 19:14

publiosulpicio ha scritto:Premetto che mi accontento anche di una risposta intuitiva. Per chi volesse cimentarsi in una risposta rigorosa premetto che intendo tutti i concetti nel senso di Halmos in A naive set theory.
Esiste un insieme $ S $ tale che $ S=\{S\} $ cioé $ S \in S $ e allo stesso tempo $ S $ è l'unico elemento di $ S $?

Corretto il LaTeX. MindFlyer
Avevo studiato un po' di teoria degli insiemi nell'ambito della prova automatica dei teoremi.
Proverò a dimostrarlo.
Se per assurdo ciò fosse vero allora S apparterrebbe ad S.
Dal momento che S appartiene ad { S } si ha che:
S appartiene a { S } che interseca S.
Sfruttando l'assioma di regolarità si ha che { S } intersecato con x, per qualche x in { S }.
Ma x = S , dal momento che S è l'unico elemento di { S }.
Segue che { S } intersecato con S = insieme vuoto.
Ma prima avevamo dimostrato che S appartiene a { S } che interseca S.
E dunquew S appartiene all'insieme vuoto, che per definizione di insieme vuoto, è assurdo.
Ciò conclude la dimostrazione.

Ma avevo risposto a questo messaggio soprattutto per chiedervi se qualcuno mi potesse fornire buoni riferimenti a materiale in rete sui sistemi matematici e filosofici che rifiutano l'assioma di regolarità (e dunque dovrebbero permettere fatti come "A appartiene ad A", oppure "A appartiene a B e B appartiene a C e C appartiene ad A") come , mi sembra, quello di Quine (o forse mi sbaglio).

CUCU
Messaggi: 40
Iscritto il: 01 nov 2005, 14:55

Messaggio da CUCU » 08 gen 2006, 19:17

non so cosa succeda, ma ricevevo errori dopo aver inviato il messaggio, ma poi mi sono avveduto che fortunatamente almeno uno è stato inviato correttamente.
Fa fede l'ultimo messaggio precedente a questo.

Avatar utente
HumanTorch
Messaggi: 281
Iscritto il: 01 gen 1970, 01:00
Località: Tricase

Messaggio da HumanTorch » 08 gen 2006, 21:31

Mmmh...se guardiamo alle partizioni di $ S $: constando $ S $ di un solo elemento, $ \mathfrak{P}_S $ avrà due elementi. Allora l'insieme S-elemento dovra avere anch'esso due sottoinsiemi. Ma l'insieme S-elemento dovrà contenere egli stesso un altro insieme elemento $ S'\equiv S $. Quindi avremo infiniti insiemi uguali l'uno dentro l'altro, il che può anche essere vero. E se lo guardassimo dal punto di vista geometrico in un sistema non euclideo? in modo che ci siano due insiemi che si contengano l'un l'altro? O sto sparando una marea di minchiate?

CUCU
Messaggi: 40
Iscritto il: 01 nov 2005, 14:55

Messaggio da CUCU » 09 gen 2006, 08:07

HumanTorch ha scritto:Mmmh...se guardiamo alle partizioni di $ S $: constando $ S $ di un solo elemento, $ \mathfrak{P}_S $ avrà due elementi. Allora l'insieme S-elemento dovra avere anch'esso due sottoinsiemi. Ma l'insieme S-elemento dovrà contenere egli stesso un altro insieme elemento $ S'\equiv S $. Quindi avremo infiniti insiemi uguali l'uno dentro l'altro, il che può anche essere vero. E se lo guardassimo dal punto di vista geometrico in un sistema non euclideo? in modo che ci siano due insiemi che si contengano l'un l'altro? O sto sparando una marea di minchiate?
Da quello che avevo studiato non è possibile provare questo fatto senza l'assioma di regolarità, come dice anche marco.
Infatti, se tu potessi provarlo forse l'assioma di regolarità sarebbe provato dagli altri assiomi.
Inoltre se tu potessi provare il contrario dagli altri assiomi, l'aggiunta dell'assioma di regolarità produrrebbe una inconsistenza.
Ma la mia prova precedente è corretta, avevo mancato un "insieme vuoto" che ieri non riuscivo ad aggiungere ma questo forum non funziona sul mio computer, mi dice sempre (anche quando poi vedo che il post è stato inviato) "Debug mode ecc. ecc.".

Avatar utente
HumanTorch
Messaggi: 281
Iscritto il: 01 gen 1970, 01:00
Località: Tricase

Messaggio da HumanTorch » 09 gen 2006, 13:08

Infatti, parlavo di "insiemistica non euclidea", ovvero, in analogia con le geometrie non euclidee, privata di alcuni assiomi

CUCU
Messaggi: 40
Iscritto il: 01 nov 2005, 14:55

Messaggio da CUCU » 09 gen 2006, 14:36

HumanTorch ha scritto:Infatti, parlavo di "insiemistica non euclidea", ovvero, in analogia con le geometrie non euclidee, privata di alcuni assiomi
E' proprio quello che mi interessava.
Mi puoi consigliare del materiale in rete o dei libri da consigliarmi?

E nello specifico hai referenze al sistema di Quine che non contempla l'assioma di regolarità?

Avatar utente
HumanTorch
Messaggi: 281
Iscritto il: 01 gen 1970, 01:00
Località: Tricase

Messaggio da HumanTorch » 09 gen 2006, 20:12

CUCU ha scritto: Mi puoi consigliare del materiale in rete o dei libri da consigliarmi?

E nello specifico hai referenze al sistema di Quine che non contempla l'assioma di regolarità?
Sepiacente, ma non so neanche se ci siano trattati o dispense sull'argomento, se qualcuno ne parli...comunque provo a cercare

Rispondi