Funzioni in due variabili

Analisi, algebra lineare, topologia, gruppi, anelli, campi, ...
galaxy
Messaggi: 6
Iscritto il: 02 giu 2005, 21:42

Funzioni in due variabili

Messaggio da galaxy » 03 giu 2005, 02:41

Salve, avrei qualche problema nella rappresentazione geometrica nello spazio.

Esempio:
Se abbiamo una funzione che ha per dominio una circonferenza che è uguale e maggiore di O per tutti i punti della circonferenza e per quelli interni ad essa,
se prendiamo il punto P(o,o) abbiamo una semisfera con z=3.
Spero che sono stato chiaro.......

Domanda:

Se invece di una circonferenza abbiamo per dominio una parabola? come verrebbe la rappresentazione nello spazio?

Grazie
Ho fatto quel che un vincitore poteva metterci di suo: non aver temuto la morte, non aver ceduto con fermo viso a nessun simile, aver preferito una morte animosa a un'imbelle vita.

MindFlyer

Re: Funzioni in due variabili

Messaggio da MindFlyer » 03 giu 2005, 03:36

galaxy ha scritto:Spero che sono stato chiaro.......
Spiacente di deludere le tue speranze. :?

galaxy
Messaggi: 6
Iscritto il: 02 giu 2005, 21:42

Messaggio da galaxy » 03 giu 2005, 11:22

Se abbiamo una funzione che ha per dominio una circonferenza che è uguale e maggiore di O per tutti i punti della circonferenza e per quelli interni ad essa.
La circoferenza disegnata sul piano ha centro in ( 0,0) con raggio=3
Nello spazio se prendiamo il punto P(o,o) abbiamo una semisfera con z=3.
Ho fatto quel che un vincitore poteva metterci di suo: non aver temuto la morte, non aver ceduto con fermo viso a nessun simile, aver preferito una morte animosa a un'imbelle vita.

hexen
Messaggi: 237
Iscritto il: 01 gen 1970, 01:00
Località: polonia
Contatta:

Messaggio da hexen » 03 giu 2005, 14:12

galaxy ha scritto:La circoferenza disegnata sul piano ha centro in ( 0,0) con raggio=3
Il dominio è $ D= \{ x,y \mbox{ t.c. } x^2+y^2 \leq \sqrt 3 \} $ cioè i punti interni al cerchio circonferenza compresa o tutto $ \mathbb R ^2 $ escluso il cerchio?

Per quanto riguarda la parabola in quel caso dovresti delimitare un'area finita di piano oppure vuoi che la funzione sia definita solo nei punti che soddisfano il luogo geometrico di quella parabola?

poi per la semisfera non ho capito cosa vuoi fare...
[url=http://davidpet.interfree.it/renato.html:3r47vsho]Stamattina hanno suonato alla porta. Sono andato ad aprire e...[/url:3r47vsho]
[url=http://davidpet.interfree.it/jabber/index.html:3r47vsho]Guida introduttiva a Jabber[/url:3r47vsho]

MindFlyer

Messaggio da MindFlyer » 03 giu 2005, 14:26

Scusa galaxy, ma cos'è che vuoi sapere?

galaxy
Messaggi: 6
Iscritto il: 02 giu 2005, 21:42

Messaggio da galaxy » 03 giu 2005, 19:26

Il dominio è: 9-y^2-x^2 maggiore uguale a zero.

Il mio problema è che non so rappresentare una qualsiesi parabola nello spazo.
Ho fatto quel che un vincitore poteva metterci di suo: non aver temuto la morte, non aver ceduto con fermo viso a nessun simile, aver preferito una morte animosa a un'imbelle vita.

Offidani
Messaggi: 157
Iscritto il: 01 gen 1970, 01:00
Località: Roma

Messaggio da Offidani » 03 giu 2005, 19:32

cioè non sai trovare l'equazione di una parabola nello spazio?

galaxy
Messaggi: 6
Iscritto il: 02 giu 2005, 21:42

Messaggio da galaxy » 03 giu 2005, 19:35

Si!
Ho fatto quel che un vincitore poteva metterci di suo: non aver temuto la morte, non aver ceduto con fermo viso a nessun simile, aver preferito una morte animosa a un'imbelle vita.

fur3770

Messaggio da fur3770 » 03 giu 2005, 19:46

come sarebbe a dire una parabola nello spazio?? ma esiste? non credo proprio...

fur3770

Messaggio da fur3770 » 03 giu 2005, 21:03

galaxy ha scritto:Se abbiamo una funzione che ha per dominio una circonferenza che è uguale e maggiore di O per tutti i punti della circonferenza e per quelli interni ad essa.
La circoferenza disegnata sul piano ha centro in ( 0,0) con raggio=3
Nello spazio se prendiamo il punto P(o,o) abbiamo una semisfera con z=3.

Allora anzitutto nello spazio hai bisogno di 3 coordinate per rappresentare un puntp $ P(x,y,z) $ ... la coordinata z non è il raggio della sfera....


$ x^2 + y^2 + z^2 = r^2 $ equazione generica di una sfera nello spazio over r è il raggio e con centro l'origine


ma forse ho capito che intendi, e cioè rappresentare nello spazio una sfera di centro l'origine (0,0,0) e raggio 3 contenuta nel semispazio z>= 0 (ad esempio)... in questo caso la sfera è rappresentata dal sistema:


$ 0=< x^2 + y^2 <= 9 $ => che rappresenta nel piano xy il cerchio C di centro l'origine e raggio 3

$ 0 =< z <= \sqrt {9 -x^2 -y^2} $ => con questa stabilisci la restrizione di z

il tutto a sistema...

in pratica prima fissi il cerchio nel piano $ xy $ e poi con la $ z $ determini la restrizione. se devi rappresentare una sfera la restrizione di $ z $ deve essere con radice altrimenti (se è tra interi o in genere reali) ottieni un cilindro come è facile immaginare.


tutta la sfera sarà data dal sistema tra:

$ 0=< x^2 + y^2 <= 9 $

$ - \sqrt {9 -x^2 -y^2}=< z <= \sqrt {9 -x^2 -y^2} $


la semisfera contenuta in z<=0:

$ 0=< x^2 + y^2 <= 9 $

$ - \sqrt {9 -x^2 -y^2}=< z <= 0 $


Per disegnarla, disegni la terna cartesiana...



galaxy ha scritto:Il dominio è: 9-y^2-x^2 maggiore uguale a zero.

Il mio problema è che non so rappresentare una qualsiesi parabola nello spazo.
ma questo è anzitutto nel piano perché ci sono 2 coordinate e per di piu' è un cerchio...

$ 9-y^2-x^2 >=0 $ -> $ x^2 + y^2 <=9 $

ovvero stai considerando $ 0<=x^2 + y^2 <=9 $ poiché evidentemente la somma di quadrati non può essere negativa... dunque nel paino rappresenta il cerchio di centro l'origine e raggio 3...


Bye

hexen
Messaggi: 237
Iscritto il: 01 gen 1970, 01:00
Località: polonia
Contatta:

Messaggio da hexen » 03 giu 2005, 21:55

penso basti l'equazione $ z=\sqrt{9-x^2-y^2} $ per la semisfera in $ \mathbb R^3 $. Per esistere il radicale deve aversi $ 9-x^2-y^2 \geq 0 $ quindi $ D=\{x,y | x^2-y^2 \leq 9 \} $ come già detto.

Per quanto riguarda il dominio parabola, devi avere una funzione il cui dominio è $ D=\{x,y | p(x,y)=0\} $ dove p(x,y) è l'equazione del luogo geometrico della parabola :wink:
[url=http://davidpet.interfree.it/renato.html:3r47vsho]Stamattina hanno suonato alla porta. Sono andato ad aprire e...[/url:3r47vsho]
[url=http://davidpet.interfree.it/jabber/index.html:3r47vsho]Guida introduttiva a Jabber[/url:3r47vsho]

fur3770

Messaggio da fur3770 » 03 giu 2005, 22:05

si sicuramente basta e si ricava dalla forma canonica, ma dipende che deve farci. Nel senso che (parlo da conoscenze da liceo) ad esempio se deve andarci a calcolare integrali doppi o tripli mi pare che il dominio debba essere espresso in forma normale (che è come l'ho espresso io).

in R^3 non dovrebbero esistere parabole.

bye

hexen
Messaggi: 237
Iscritto il: 01 gen 1970, 01:00
Località: polonia
Contatta:

Messaggio da hexen » 03 giu 2005, 22:13

forse voleva dire il paraboloide, cmq se voleva dire il dominio parabolico può darsi che volesse dire una funzione tipo $ z= \log (y+ax^2+bx+c) $ (con dominio tutte le y maggiori della parabola oppure ad esempio $ z = \frac 1 {y+ax^2+bx+c} $ dove il dominio è tutto R^2 meno i punti del luogo di una parabola. Altre con il dominio corrispondente al luogo parabola non mi vengono :D
[url=http://davidpet.interfree.it/renato.html:3r47vsho]Stamattina hanno suonato alla porta. Sono andato ad aprire e...[/url:3r47vsho]
[url=http://davidpet.interfree.it/jabber/index.html:3r47vsho]Guida introduttiva a Jabber[/url:3r47vsho]

fur3770

Messaggio da fur3770 » 03 giu 2005, 22:21

o forse voleva prenderci in giro

Avatar utente
Wilddiamond
Messaggi: 348
Iscritto il: 01 gen 1970, 01:00
Località: S.Anna - Pisa ...e Montale (PT)

Messaggio da Wilddiamond » 04 giu 2005, 22:31

fur3770 ha scritto:come sarebbe a dire una parabola nello spazio?? ma esiste? non credo proprio...
fur3770 ha scritto:in R^3 non dovrebbero esistere parabole.
No?? :shock: :shock: Ma scusa, secondo te le parabole esistono nel piano?
E il piano fa parte dello spazio o no?
-- Io sono fiero del mio sognare, di questo eterno mio incespicare --

F.Guccini "Quattro stracci" 1996

Rispondi