
E io sono un fesso...
Ricorda che Viète tiene conto di TUTTE le radici, anche quelle complesse,__Cu_Jo__ ha scritto:A me come risultato viene 2/5,ma è probabile che abbia fatto un errore di calcolo.
Per lo sviluppo in serie di tanx abbiamo:
$ \displaymatch x + \frac{{x^3 }}{3} + \frac{{2x^5 }}{{15}} + e_5 (x) = x \Rightarrow \frac{{x^3 }}{3} + \frac{{2x^5 }}{{15}} + e_5 (x) = 0 $
da cui si ricava dividendo ambo i membri per x^3:
$ \displaymatch \frac{1}{3} + \frac{2}{{15}}x^2 + \frac{{e_5 }}{{x^3 }} = 0 $.
Indichiamo con $ x_i $ ,dove i=1,2,..inf ,le radici di questo polinomio.
Siccome il polinomio è pari è facile verificare che
$ \displaymatch \sum\limits_{i = 1}^\infty {\frac{1}{{x_i }} = 0} $
ovvero
$ \displaymatch \left( {\sum\limits_{i = 1}^\infty {\frac{1}{{x_i }}} } \right)^2 = \sum\limits_{i = 1}^\infty {\frac{1}{{x_i^2 }} + 2\sum\limits_{1 \le i < j} {\frac{1}{{x_i x_j }}} } = 0 $
Utilizzando le formule di Viete si arriva finalmente al risultato
$ \displaymatch \sum\limits_{i = 1}^\infty {\frac{1}{{x_i^2 }} = 2\frac{{\frac{2}{{15}}}}{{\frac{1}{3}}} = \frac{4}{5} \Rightarrow \sum\limits_{j = 1}^\infty {\frac{1}{{a_j }} = \frac{2}{5}} } $