Quando Gardner incontra Silvan

Conteggi, probabilità, invarianti, logica, matematizzazione, ...
Rispondi
Avatar utente
rand
Messaggi: 109
Iscritto il: 29 ott 2006, 01:11
Località: Vedi avatar

Quando Gardner incontra Silvan

Messaggio da rand » 30 mag 2007, 21:53

Un noto prestigiatore vi pone davanti un classico mazzo di 52 carte di 4 semi e vi chiede di sceglierne 5 a caso. Lui non può vedere le carte quando voi le scegliete e a quel momento ha zero informazioni sulla loro identità. Quindi vi chiede di passare le carte al suo assistente, il quale, dopo un pò di conti, ne seleziona 4 tra esse e le mostra una alla volta secondo un ordine da lui scelto al prestigiatore. Il prestigiatore, senza ricorrere ad alcun particolare imbroglio, è in grado, dopo aver visto le quattro carte, di indovinare la rimanente. Come ci riesce ?

Avatar utente
Marco
Site Admin
Messaggi: 1331
Iscritto il: 01 gen 1970, 01:00
Località: IMO '93

Messaggio da Marco » 31 mag 2007, 11:49

Bellino. Ma questa è matematica olimpica a tutti gli effetti. Spostato. M.
[i:2epswnx1]già ambasciatore ufficiale di RM in Londra[/i:2epswnx1]
- - - - -
"Well, master, we're in a fix and no mistake."

Avatar utente
3C273
Messaggi: 113
Iscritto il: 10 mag 2007, 17:38

Messaggio da 3C273 » 31 mag 2007, 12:51

Carino! A prima vista sembra che manchi un bit di parità perchè 4! sono 24 ordinamenti, ma bisogna far indovinare 1 carta su 52-4=48... Invece...

Innanzitutto, date due carte con lo stesso seme e di valore $ a $ e $ b $ (con $ 1\leq a,b\leq 13 $), definisco la loro differenza $ d(a,b)=(a-b)_{mod13} $. Ovviamente, $ d(a,b)\leq 6 $ (e in questo caso dirò che $ a $ è la più grande e $ b $ è la più piccola) oppure $ d(b,a)\leq 6 $ (e in questo caso dirò che $ b $ è la più grande e $ a $ è la più piccola).
Tra le 5 carte ce ne sono almeno due con lo stesso seme. Considero queste 2: scelgo di far indovinare la più grande (secondo la definizione di prima) e consegno la più piccola come prima carta. Mi restano da consegnare 3 carte, e potendole ordinare in 3! modi mi permettono di comunicare un numero da 1 a 6. Il prestigiatore vedendo la prima carta conosce il seme di quella da indovinare, e sa anche da dove deve iniziare a contare; vedendo le altre 3 carte capisce che valore deve aggiungere alla prima carta per indovinare quella nascosta. Se ottiene un numero maggiore di 13, sottrae 13 e ha finito.

PS: VOGLIO FARLO A QUALCUNO!!!!!!

Avatar utente
exodd
Messaggi: 728
Iscritto il: 09 mar 2007, 19:46
Località: sulle pendici della provincia più alta d'europa

Messaggio da exodd » 31 mag 2007, 20:40

scusa , ma perkè la differenza a-b deve essere minore o uguale a 6?
Tutto è possibile: L'impossibile richiede solo più tempo
julio14 ha scritto: jordan è in realtà l'origine e il fine di tutti i mali in $ \mathbb{N} $
EvaristeG ha scritto:Quindi la logica non ci capisce un'allegra e convergente mazza.
ispiratore del BTA

in geometry, angles are angels

"la traslazione non è altro che un'omotetia di centro infinito e k... molto strano"

Avatar utente
SkZ
Messaggi: 3333
Iscritto il: 03 ago 2006, 21:02
Località: Concepcion, Chile
Contatta:

Messaggio da SkZ » 31 mag 2007, 20:44

da quanto ho capito, puoi avere, ad es, $ ~13-1\equiv 12 \mod 13 $ e $ ~1-13\equiv 1 \mod 13 $
tu poi fornisci sempre la seconda carta, in questo caso 13. Con le correzioni successive avresti 14, quindi 1

dati $ ~a<b $ hai $ ~b-a $ e $ ~13-(b-a) $ e se uno e' maggiore di 6 l'altro ne e' minore o uguale
Ultima modifica di SkZ il 31 mag 2007, 21:03, modificato 1 volta in totale.
impara il [tex]~\LaTeX[/tex] e mettilo da par[tex]\TeX~[/tex]

Software is like sex: it's better when it's free (Linus T.)
membro: Club Nostalgici
Non essere egoista, dona anche tu! http://fpv.hacknight.org/a8.php

Avatar utente
exodd
Messaggi: 728
Iscritto il: 09 mar 2007, 19:46
Località: sulle pendici della provincia più alta d'europa

Messaggio da exodd » 31 mag 2007, 20:58

ma 1 meno 13 non da congruo 1 modulo 13
Tutto è possibile: L'impossibile richiede solo più tempo
julio14 ha scritto: jordan è in realtà l'origine e il fine di tutti i mali in $ \mathbb{N} $
EvaristeG ha scritto:Quindi la logica non ci capisce un'allegra e convergente mazza.
ispiratore del BTA

in geometry, angles are angels

"la traslazione non è altro che un'omotetia di centro infinito e k... molto strano"

Avatar utente
SkZ
Messaggi: 3333
Iscritto il: 03 ago 2006, 21:02
Località: Concepcion, Chile
Contatta:

Messaggio da SkZ » 31 mag 2007, 21:04

$ ~1-13\equiv 1-13+13 \mod 13 $
impara il [tex]~\LaTeX[/tex] e mettilo da par[tex]\TeX~[/tex]

Software is like sex: it's better when it's free (Linus T.)
membro: Club Nostalgici
Non essere egoista, dona anche tu! http://fpv.hacknight.org/a8.php

alvinlee88
Messaggi: 49
Iscritto il: 26 lug 2007, 01:34

Messaggio da alvinlee88 » 09 ago 2007, 00:58

davvero bellino, ma non mi molto chiaro in pratica (leggi se volessi farlo a qualcuno)..specie questo passaggio...
3C273 ha scritto: Mi restano da consegnare 3 carte, e potendole ordinare in 3! modi mi permettono di comunicare un numero da 1 a 6.
come fai a comunicare questo numero?

Avatar utente
mattilgale
Messaggi: 372
Iscritto il: 01 gen 1970, 01:00
Località: Lucca
Contatta:

Messaggio da mattilgale » 09 ago 2007, 12:02

in effetti quel punto è mal argomentato secondo me... ma c'è un modo fico

dai un ordinamento alle carte... prima in base al numero, poi in base al seme: cioè se una carta A ha numero più alto di B allora A>B... se hanno lo stesso numero allora definiamo un ordine (tipo CuoriQuadriFioriPicche) e se per esempio A è di Quadri e B di Picche allora A>B

in questo modo il mio amico vedendo la sequenza ABC può abbinarle un numero

poniamo A>B>C
allora
ABC=1
ACB=2
BAC=3
BCA=4
CAB=5
CBA=6
"la matematica è il linguaggio con cui Dio ha plasmato l'universo"

Galileo Galilei

alvinlee88
Messaggi: 49
Iscritto il: 26 lug 2007, 01:34

Messaggio da alvinlee88 » 10 ago 2007, 15:20

infatti il modo è fico, l'ho provato con ma mi sorella come assistene e funziona...c'è però una cosa che non torna...
se la differenza fra la carta da indovinare (la 5°) e la prima che consegno è maggiore di sei, non si può comunicare quel numero...allora ho pensato: se siamo in questa situazione, l'assistente mi pssa fra le due la carta più ALTA, e poi mi comunica il numero (con le altr 3 carte) da sommare alla carta più alta, andando oltre il K e ripartendo da capo...ad esempio se ci sono nelle cinque carte iniziali un 2 e una donna a fiori, mi da la donna e mi comunica un 3. semplice ma efficace...provar.e..

Rispondi