Semplice ma carino!

Conteggi, probabilità, invarianti, logica, matematizzazione, ...
Rispondi
FedeX333X
Messaggi: 50
Iscritto il: 04 giu 2017, 16:34

Semplice ma carino!

Messaggio da FedeX333X » 13 nov 2017, 07:58

Dato che si avvicina il famigerato Archimede...

Sia $a_1,a_2,...,a_{16}$ una permutazione di $\{1,2,...,16\}$ tale che $a_k-a_j\neq a_j-a_i$ per ogni $1\leq i <j<k\leq 16.$ Quanto vale $a_5$?

Salvador
Messaggi: 24
Iscritto il: 09 apr 2017, 14:35

Re: Semplice ma carino!

Messaggio da Salvador » 19 nov 2017, 13:39

Testo nascosto:
16 8 12 4 14 6 10 2 15 7 11 3 13 5 9 1

savian
Messaggi: 2
Iscritto il: 20 nov 2017, 14:16

Re: Semplice ma carino!

Messaggio da savian » 20 nov 2017, 14:24

qualcuno potrebbe spiegarmi il procedimento?

Talete
Messaggi: 666
Iscritto il: 05 giu 2014, 13:47
Località: Riva del Garda

Re: Semplice ma carino!

Messaggio da Talete » 20 nov 2017, 18:54

savian ha scritto:
20 nov 2017, 14:24
qualcuno potrebbe spiegarmi il procedimento?
Per due:
2 1

Per quattro:
4 2 3 1

Per otto:
8 4 6 2 7 3 5 1

Per sedici:
16 8 12 4 14 6 10 2 15 7 11 3 13 5 9 1

E così via
"Sei il Ballini della situazione" -- Nikkio
"Meriti la menzione di sdegno" -- troppa gente
"Sei arrivato 69esimo? Ottima posizione!" -- Andrea M. (che non è Andrea Monti, come certa gente pensa)
"Se ti interessa stanno inventando le baricentriche elettroniche, che dovrebbero aiutare a smettere..." -- Bernardo

savian
Messaggi: 2
Iscritto il: 20 nov 2017, 14:16

Re: Semplice ma carino!

Messaggio da savian » 20 nov 2017, 23:52

Talete ha scritto:
20 nov 2017, 18:54
savian ha scritto:
20 nov 2017, 14:24
qualcuno potrebbe spiegarmi il procedimento?
Per due:
2 1

Per quattro:
4 2 3 1

Per otto:
8 4 6 2 7 3 5 1

Per sedici:
16 8 12 4 14 6 10 2 15 7 11 3 13 5 9 1

E così via
Mi rendo conto della mia ignoranza, ma potrei chiederti il favore di essere più dettagliato? (E' da poco che mi sono seriamente appassionato alla materia e faccio un po' di difficoltà)

Talete
Messaggi: 666
Iscritto il: 05 giu 2014, 13:47
Località: Riva del Garda

Re: Semplice ma carino!

Messaggio da Talete » 23 nov 2017, 12:41

Oh be' non saprei spiegarlo molto bene, però l'idea è provare a farlo per 2, 4, 8... e ricondursi ogni volta al caso precedente. Per 4 è 4-2-3-1 (sembra un modulo calcistico), per 8 ti accorgi che deve essere 8-4-6-2 (il doppio di quello di prima) seguito da 7-3-5-1 (quello a cui togli 1). Ma non saprei spiegarti come ci si arriva perché non l'ho fatto io, mi ha fatto vedere il risultato Salvador
"Sei il Ballini della situazione" -- Nikkio
"Meriti la menzione di sdegno" -- troppa gente
"Sei arrivato 69esimo? Ottima posizione!" -- Andrea M. (che non è Andrea Monti, come certa gente pensa)
"Se ti interessa stanno inventando le baricentriche elettroniche, che dovrebbero aiutare a smettere..." -- Bernardo

Salvador
Messaggi: 24
Iscritto il: 09 apr 2017, 14:35

Re: Semplice ma carino!

Messaggio da Salvador » 02 dic 2017, 22:14

Talete ha scritto:
23 nov 2017, 12:41
Oh be' non saprei spiegarlo molto bene, però l'idea è provare a farlo per 2, 4, 8... e ricondursi ogni volta al caso precedente. Per 4 è 4-2-3-1 (sembra un modulo calcistico), per 8 ti accorgi che deve essere 8-4-6-2 (il doppio di quello di prima) seguito da 7-3-5-1 (quello a cui togli 1). Ma non saprei spiegarti come ci si arriva perché non l'ho fatto io, mi ha fatto vedere il risultato Salvador
Molto a euristica in realtà...
Te lo riscrivi come $a_j \ne \dfrac{a_i+a_k}{2}$ e poi a euristica cerchi di metterli in modo da "annullarsi a vicenda".
Comunque io non ci vedo nulla né di semplice né di carino

FedeX333X
Messaggi: 50
Iscritto il: 04 giu 2017, 16:34

Re: Semplice ma carino!

Messaggio da FedeX333X » 02 dic 2017, 23:45

Ma se invece provassi a farlo per induzione? :)

Talete
Messaggi: 666
Iscritto il: 05 giu 2014, 13:47
Località: Riva del Garda

Re: Semplice ma carino!

Messaggio da Talete » 04 dic 2017, 19:20

Salvador ha scritto:
02 dic 2017, 22:14
Comunque io non ci vedo nulla né di semplice né di carino
Semplice boh, in realtà ci hai messo poco tempo a farlo.

Carino per niente.
"Sei il Ballini della situazione" -- Nikkio
"Meriti la menzione di sdegno" -- troppa gente
"Sei arrivato 69esimo? Ottima posizione!" -- Andrea M. (che non è Andrea Monti, come certa gente pensa)
"Se ti interessa stanno inventando le baricentriche elettroniche, che dovrebbero aiutare a smettere..." -- Bernardo

Rispondi

Chi c’è in linea

Visitano il forum: Nessuno e 4 ospiti