Own, ma se è vero probabilmente non è own

Conteggi, probabilità, invarianti, logica, matematizzazione, ...
Rispondi
Gerald Lambeau
Messaggi: 279
Iscritto il: 17 mag 2015, 13:32

Own, ma se è vero probabilmente non è own

Messaggio da Gerald Lambeau » 24 lug 2017, 20:13

Sia $n$ un intero maggiore o uguale a $3$. Sono dati $n$ punti a due a due non coincidenti e a tre a tre non allineati. Dimostrare che è possibile scegliere $3$ tra questi $n$ punti tali che tutti gli altri punti stanno dentro o sulla circonferenza passante per i $3$ punti scelti.
Credo che sia vero, in caso avessi cannato ditemelo...
"Non ho rispetto per i miei superiori, figurati se ho rispetto per i miei pari: il rispetto di un uomo lo merita solo chi è a lui inferiore."
Cit. Marco (mio vero nome)

The Game.

Ci sono cose che non si possono confutare; per tutto il resto, c'è la fisica.

Avatar utente
Tess
Messaggi: 244
Iscritto il: 15 set 2009, 14:20
Località: Maserada s. P.

Re: Own, ma se è vero probabilmente non è own

Messaggio da Tess » 30 ago 2017, 15:19

Problema interessante, peccato che nessuno dica niente...

Un aiuto che mi sento doveroso di dare è il seguente: il problema è geometrico e, come per moltissimi altri che condividono questa natura, si dovrebbe cercare un qualche oggetto estremale.
Testo nascosto:
Ci sono almeno due oggetti che sembrano c'entrare qualcosa.

Avatar utente
Federico II
Messaggi: 213
Iscritto il: 14 mag 2014, 14:56
Località: Roma

Re: Own, ma se è vero probabilmente non è own

Messaggio da Federico II » 30 ago 2017, 23:42

Perché sporcarsi le mani con l'estremale quando puoi
Testo nascosto:
ricordarti di quella definizione straswag del convex hull in cui racchiudi tutti i punti in un grande elastico e poi lo lasci andare, e fare la stessa cosa con un elastico vincolato a rimanere sempre di forma circolare? Con qualche aggiustamento funziona (l'elastico arriverà sicuramente a toccare due punti, e poi lo sposti tenendo fissi quei due punti, eventualmente facendolo ingrandire o rimpicciolire, finché non ne tocca un terzo).
Il responsabile della sala seminari

Gerald Lambeau
Messaggi: 279
Iscritto il: 17 mag 2015, 13:32

Re: Own, ma se è vero probabilmente non è own

Messaggio da Gerald Lambeau » 31 ago 2017, 14:07

Federico II ha scritto:
30 ago 2017, 23:42
Perché sporcarsi le mani con l'estremale quando puoi
Testo nascosto:
ricordarti di quella definizione straswag del convex hull in cui racchiudi tutti i punti in un grande elastico e poi lo lasci andare, e fare la stessa cosa con un elastico vincolato a rimanere sempre di forma circolare? Con qualche aggiustamento funziona (l'elastico arriverà sicuramente a toccare due punti, e poi lo sposti tenendo fissi quei due punti, eventualmente facendolo ingrandire o rimpicciolire, finché non ne tocca un terzo).
Anche la mia soluzione usa il convex hull.
"Non ho rispetto per i miei superiori, figurati se ho rispetto per i miei pari: il rispetto di un uomo lo merita solo chi è a lui inferiore."
Cit. Marco (mio vero nome)

The Game.

Ci sono cose che non si possono confutare; per tutto il resto, c'è la fisica.

Avatar utente
Tess
Messaggi: 244
Iscritto il: 15 set 2009, 14:20
Località: Maserada s. P.

Re: Own, ma se è vero probabilmente non è own

Messaggio da Tess » 31 ago 2017, 15:13

Non per trascinare gli avventori verso il vuoto su questo problema con parole quali "cercare qualcosa di estremale", ma, se ci pensate, il convex hull è un oggetto estremale.

Chiaramente la vostra soluzione va benissimo. Io pensavo una cosa solo formalmente differente: prendere la circonferenza più grande che passa per almeno 3 dei vertici del convex hull.

In ogni caso, siamo tutti d'accordo che il concetto di convex hull è sicuramente la chiave del problema. Per gli avventori meno esperti, che ancora non fossero a conoscenza di questo concetto, rimando qui: https://en.wikipedia.org/wiki/Convex_hull.

Rispondi

Chi c’è in linea

Visitano il forum: Nessuno e 6 ospiti