Somma di prodotti di triangolari

Conteggi, probabilità, invarianti, logica, matematizzazione, ...
Rispondi
Avatar utente
Drago96
Messaggi: 1145
Iscritto il: 14 mar 2011, 16:57
Località: Provincia di Torino
Contatta:

Somma di prodotti di triangolari

Messaggio da Drago96 » 21 ago 2012, 00:17

Determinare quanto vale $$\sum_{i=1}^n T_i\cdot T_{n+1-i}$$

Dove ovviamente $T_n$ è l'$n$-esimo numero triangolare
Imagination is more important than knowledge. For knowledge is limited, whereas imagination embraces the entire world, stimulating progress, giving birth to evolution (A. Einstein)

frod93
Messaggi: 42
Iscritto il: 17 lug 2012, 21:32
Località: Perugia

Re: Somma di prodotti di triangolari

Messaggio da frod93 » 21 ago 2012, 18:26

l'ho finalmente risolto dopo tre pagine di conti (di cui due sbagliate :oops:)

praticamente scrivi i numeri triangolari come somme di interi da $1$ a $i$ o da $1$ a $n+1-i$ (definizione di numeri triangolari) ottenendo:
$\sum_{i=1}^n T_i\cdot T_{n+1-i} = \frac {1}{4} \sum_{i=1}^n i(i+1)(n+1-i)(n+2-i)$

conti conti conti conti conti... :mrgreen:

ottieni alla fine
$\sum_{i=1}^n (i^4) -(2n+2) \sum_{i=1}^n (i^3) +(n^2+n-1)\sum_{i=1}^n (i^2)+(n^2+3n+2)\sum_{i=1}^n (i)$

conti conti conti conti...

$\displaystyle \sum_{i=1}^n T_i\cdot T_{n+1-i} = \frac {1}{120} n(n+1)(n+2)(n^2+7n+12)$
$Q.E.D.$

Avatar utente
Drago96
Messaggi: 1145
Iscritto il: 14 mar 2011, 16:57
Località: Provincia di Torino
Contatta:

Re: Somma di prodotti di triangolari

Messaggio da Drago96 » 21 ago 2012, 18:50

non ho controllato i tuoi conti ma il risultato è giusto...
e quell'espressione si può scrivere in modo compatto (scomponi il fattore di secondo grado e pensa al 120...) che fa venire in mente un approccio piu combinatorico... :)
Imagination is more important than knowledge. For knowledge is limited, whereas imagination embraces the entire world, stimulating progress, giving birth to evolution (A. Einstein)

frod93
Messaggi: 42
Iscritto il: 17 lug 2012, 21:32
Località: Perugia

Re: Somma di prodotti di triangolari

Messaggio da frod93 » 21 ago 2012, 19:14

Drago96 ha scritto:non ho controllato i tuoi conti ma il risultato è giusto...
e quell'espressione si può scrivere in modo compatto (scomponi il fattore di secondo grado e pensa al 120...) che fa venire in mente un approccio piu combinatorico... :)
è vero! :D
$\displaystyle \binom{n+5}{5}$
$Q.E.D.$

Avatar utente
Drago96
Messaggi: 1145
Iscritto il: 14 mar 2011, 16:57
Località: Provincia di Torino
Contatta:

Re: Somma di prodotti di triangolari

Messaggio da Drago96 » 21 ago 2012, 19:27

No, è

$\displaystyle\binom{n+4}5$ ;)
Imagination is more important than knowledge. For knowledge is limited, whereas imagination embraces the entire world, stimulating progress, giving birth to evolution (A. Einstein)

frod93
Messaggi: 42
Iscritto il: 17 lug 2012, 21:32
Località: Perugia

Re: Somma di prodotti di triangolari

Messaggio da frod93 » 21 ago 2012, 21:44

Drago96 ha scritto:No, è

$\displaystyle\binom{n+4}5$ ;)
:oops:
$Q.E.D.$


Avatar utente
Drago96
Messaggi: 1145
Iscritto il: 14 mar 2011, 16:57
Località: Provincia di Torino
Contatta:

Re: Somma di prodotti di triangolari

Messaggio da Drago96 » 27 ago 2012, 19:45

Se proprio devo citare qualcuno, quello è Callegari...
Questo è tutto quello che so sulle fonti di questo problema (non so se qualcuno viene ancora prima, e se esiste mi scuso con questo qualcuno sperando che non se la prenda troppo): spiegato dal dottor Callegari ad (almeno) uno stage, a cui era presente Francesco Milizia, che lo ha detto a me e lo abbiamo inserito nella gara a squadre n° 2 all'Ampleforth College.

Colgo intanto l'occasione per dirvi che esiste una dimostrazione combinatorica piuttosto figa! :D

P.S: non so se hai notato, ma se uno propone un problema suo, lo specifica... Non è il contrario... ;)
P.P.S: di solito i MP si leggono... :?
Imagination is more important than knowledge. For knowledge is limited, whereas imagination embraces the entire world, stimulating progress, giving birth to evolution (A. Einstein)

Rispondi