Probabilità

Conteggi, probabilità, invarianti, logica, matematizzazione, ...
Rispondi
Olivo3
Messaggi: 158
Iscritto il: 19 nov 2010, 15:04

Probabilità

Messaggio da Olivo3 » 11 giu 2011, 18:16

Ogni giorno circolano 1000 vetture a Milano. Sapendo che ciascuna vettura ha l'1% di fare un uncidente, quanti incidenti al giorno avvengono in media? Qual'è la probabilità che domani ci siano almeno 20 incidenti?

Zok
Messaggi: 140
Iscritto il: 01 gen 1970, 01:00
Località: Cambridge - Verona

Re: Probabilità

Messaggio da Zok » 12 giu 2011, 11:39

Se ciascun incidente riguarda un'unica vettura e gli incidenti sono l'uno indipendente dall'altro, prova a risolvere il tuo quesito guardando qui.

Probabilmente il tuo era un esercizio scolastico o olimpico, ma proviamo a renderlo più realistico! :)
Supponiamo invece che gli incidenti non siano indipendenti tra di loro e in particolare che il numero di vetture coinvolte in ogni singolo incidente è anch'esso aleatorio (che distribuzione potrebbe descrivere bene questo numero?). Con queste assunzioni il problema si fa molto più difficile...e avvincente! Ebbene sì, si tratta di un rilancio! :)

Olivo3
Messaggi: 158
Iscritto il: 19 nov 2010, 15:04

Re: Probabilità

Messaggio da Olivo3 » 13 giu 2011, 21:06

Me lo puoi risolvere comunque che quella pagina di Wikipedia è abbastanza complicata da capire? Conosci un altro documento che lo spiega in maniera più semplice?

Claudio.
Messaggi: 697
Iscritto il: 29 nov 2009, 21:34

Re: Probabilità

Messaggio da Claudio. » 14 giu 2011, 07:20

In ogni caso con la distribuzione binomiale calcoli la probabilità che precisamente n casi siano favorevoli, non almeno n.....

Zok
Messaggi: 140
Iscritto il: 01 gen 1970, 01:00
Località: Cambridge - Verona

Soluzione commentata e spero istruttiva

Messaggio da Zok » 14 giu 2011, 11:08

Ecco una soluzione commentata al problema che fa uso delle variabili aleatorie, spero vi sia d'aiuto! :)
Probabilmente il concetto di variabile aleatoria non è molto olimpico, ma cercate almeno di capire le idee contenute in questa soluzione, ho cercato di essere il più chiaro possibile!

Ciascuna macchina ha una probabilità $ p=\frac{1}{100} $ di fare un'incidente, indipendentemente dalle altre. Possiamo quindi introdurre una sequenza di variabili aleatorie per descrivere lo "stato" di ciascuna macchina (incidentata o integra): in dettaglio alla macchina $ i $-esima facciamo corrispondere la variabile aleatoria $ X_i $ che assume il valore $ 1 $ (incidente) con probabilità $ p=\frac{1}{100} $ e il valore $ 0 $ (incolume) con probabilità $ q=1-p=\frac{99}{100} $. Tale distribuzione di probabilità è detta di Bernoulli e talvolta si abbrevia con $ Be(p) $.

Introduciamo infine la variabile aleatoria binomiale $ S_n $, definita come $ \displaystyle S_n=\sum_{i=1}^n X_i $; nel nostro caso, sceglieremo $ n=1000 $, visto che tale è il numero totale di macchine circolanti. La variabile aleatoria $ S_n $ descrive il numero (aleatorio) totale degli incidenti in cui $ n $ macchine sono coinvolte: infatti se la macchina $ i $-esima è incidentata, $ X_i=1 $ e il nostro "contatatore" $ S_n $ aumenterà di 1.
Grazie all'indipendenza delle variabili di Bernoulli $ X_i $ è facile dedurre la distribuzione di probabilità di $ S_n $, che motiva il suo nome "binomiale": $ \displaystyle P(S_n=k)=P(X_1+\dots+X_n=k)=\binom{n}{k}p^k q^{n-k} $
Infine, grazie alla linearità del valor medio, è facile calcolare il valor medio di $ S_n $ che risulta essere $ E(S_n)=np $.

Ora che abbiamo definito tutto il necessario possiamo risolvere il problema:
1) il numero medio di incidenti è $ E(S_{1000})=1000 p= 1000 \cdot \frac{1}{100}=10 $
2) la probabilità che ci siano almeno 20 incidenti, ovvero $ P(S_{1000} \geq 20) $, è vero che non viene data direttamente dalla distribuzione di probabilità binomiale Claudio, ma si può semplicemente calcolare come la somma delle probabilità che ce ne siano 20, 21, 22, ecc...
Infatti basta calcolare la somma $ \displaystyle \sum_{k=20}^{1000} P(S_{1000}=k)= \sum_{k=20}^{1000} \binom{1000}{k}p^k q^{1000-k} $
In questo caso, forse conviene calcolare la probabilità $ l $ che ci siano meno di 20 incidenti che è
$ \displaystyle l=\sum_{k=0}^{19} P(S_{1000}=k)= \sum_{k=0}^{19} \binom{1000}{k}p^k q^{1000-k} $
e calcolare $ 1-l $ ricordando il legame che esiste tra la probabilità di un evento e quella del suo complementare.
Ovviamente questi conti noiosi non si fanno a mano (click) e la risposta è $ P(S_{1000} \geq 20)\approx 9.99200722162641\cdot 10^{-16} $. La probabilità che ci siano più di 20 incidenti dunque è "praticamente zero".

Strumenti probabilistici come quelli appena introdotti possono essere usati per fare dell'inferenza statistica: se il modello che mi descrive il traffico di Milano è correttamente tarato (mi riferisco alle scelte di $ p $ e di $ n $) allora è "quasi impossibile" o "assolutamente improbabile" che si verifichino 20 incidenti in un giorno. Dunque o è colpa di Pisapia o degli alieni! :D

Rispondi