Quanti sono i divisori di n!

Conteggi, probabilità, invarianti, logica, matematizzazione, ...
Rispondi
OriginalBBB
Messaggi: 69
Iscritto il: 09 nov 2009, 14:25

Quanti sono i divisori di n!

Messaggio da OriginalBBB » 15 dic 2009, 11:20

Quanti sono i divisori di n! ? L'unica cosa (ovvia) che so al momento è che non sono minori di n e che non sono maggiori di n + (n-1) + (n-2) .....

geda
Messaggi: 125
Iscritto il: 30 ott 2007, 12:03

Re: Quanti sono i divisori di n!

Messaggio da geda » 15 dic 2009, 13:30

OriginalBBB ha scritto:.... e che non sono maggiori di n + (n-1) + (n-2) .....
Sei sicuro?

Se ti vuoi convincere considera il seguente esempio:
$ 6!=720=2^43^25 $, il numero di divisori e' $ (4+1)(2+1)(1+1)=30 $, ma $ 6+5+4+3+2+1=21 $ ....

Hint: la formula di De Polignac puo' essere utile.

Gauss91
Messaggi: 240
Iscritto il: 19 set 2009, 16:52
Località: Pisa / Milano

Messaggio da Gauss91 » 15 dic 2009, 18:08

Ma se si sa quella formula non è banale il problema? :o
"Cos'è l'aritmetica?" "E' quella scienza in cui si impara quello che si sa già!"

Claudio.
Messaggi: 695
Iscritto il: 29 nov 2009, 21:34

Re: Quanti sono i divisori di n!

Messaggio da Claudio. » 15 dic 2009, 18:43

OriginalBBB ha scritto:Quanti sono i divisori di n! ? L'unica cosa (ovvia) che so al momento è che non sono minori di n e che non sono maggiori di n + (n-1) + (n-2) .....
Se vuoi sapere solo il loro numero puoi usare la combinatoria XD
Sono $ \displaystyle n!+\left(\frac{n!}{1!}\right)+\left(\frac{n!}{2!}\right)+\left(\frac{n!}{3!}\right)+...+\left(\frac{n!}{(n-1)!}\right) $
EDIT: Mi sono scordato di togliere alcuni possibili prodotti uguali.
Ultima modifica di Claudio. il 20 dic 2009, 11:00, modificato 1 volta in totale.

geda
Messaggi: 125
Iscritto il: 30 ott 2007, 12:03

Re: Quanti sono i divisori di n!

Messaggio da geda » 15 dic 2009, 20:27

Claudio. ha scritto:
OriginalBBB ha scritto:Quanti sono i divisori di n! ? L'unica cosa (ovvia) che so al momento è che non sono minori di n e che non sono maggiori di n + (n-1) + (n-2) .....
Se vuoi sapere solo il loro numero puoi usare la combinatoria XD
Sono $ n!+(\frac{n!}{1!})+(\frac{n!}{2!})+(\frac{n!}{3!})+...+(\frac{n!}{(n-1)!}) $
EDIT: Mi sono scordato di togliere alcuni possibili prodotti uguali.
Mmm.. Mi sa che "i possibili prodotti uguali" sono un bel po'. Abbiamo visto che $ 6! $ ha solo 30 divisori e non 720 + ....

Claudio.
Messaggi: 695
Iscritto il: 29 nov 2009, 21:34

Re: Quanti sono i divisori di n!

Messaggio da Claudio. » 15 dic 2009, 20:41

geda ha scritto:
Claudio. ha scritto:
OriginalBBB ha scritto:Quanti sono i divisori di n! ? L'unica cosa (ovvia) che so al momento è che non sono minori di n e che non sono maggiori di n + (n-1) + (n-2) .....
Se vuoi sapere solo il loro numero puoi usare la combinatoria XD
Sono $ n!+(\frac{n!}{1!})+(\frac{n!}{2!})+(\frac{n!}{3!})+...+(\frac{n!}{(n-1)!}) $
EDIT: Mi sono scordato di togliere alcuni possibili prodotti uguali.
Mmm.. Mi sa che "i possibili prodotti uguali" sono un bel po'. Abbiamo visto che $ 6! $ ha solo 30 divisori e non 720 + ....
Si ho fatto un grosso errore, poichè usando la combinatoria ho considerato i numeri semplicemente come elementi qualsiasi quindi. Mi scusa per la ca**ata :D (tanto per cambiare XD)

geda
Messaggi: 125
Iscritto il: 30 ott 2007, 12:03

Re: Quanti sono i divisori di n!

Messaggio da geda » 15 dic 2009, 21:04

Claudio. ha scritto:... Mi scusa per la ca**ata :D (tanto per cambiare XD)
Non ti preoccupare :wink:. Prova ad andare avanti, mi pare interesante.

mathias.jag
Messaggi: 11
Iscritto il: 20 feb 2010, 13:26

Messaggio da mathias.jag » 20 feb 2010, 15:13

Innanzitutto buongiorno a tutti...
Dai commenti precendenti noto due cose:
1) per contare i divisori di n! è sufficente fatorizzarlo in numeri primi
2) l'unico problema sussiste quindi nel trovare il più grande numero primo minore di n e determinare gli esponenti di tutti i numeri primi il cui prodotto va a costituire n!

Qualche tempo feci un corso a scuola in cui si chiedeva con quanti zeri finiva 2008!...
dopo un quatro d'ora di vuoto, mi arresi e passai ad altro, ma il punto è un altro. Il prof spiegò infatti che bastava contare TUTTE le potenze di 5 che "venivano coinvolte" in 2008! e spiegò più o meno come fare. Dopodichè.... Beh, mi accorsi che per contare ltutti i fattori primi pari a 5 che costituiscono n! bastava calcolare:
$ $\sum_{i=1}^\infty \lfloor n/5^i\rfloor$ $

quindi tutti i fattori primi pari a $ p_k $ in n! sono:

$ $\sum_{i=1}^\infty \lfloor n/(p_k)^i\rfloor$ $

quindi la formula appena detta dà, in altre parole, l'esponente che assume il fattore 5 nella fattorizzazione in fattori primi di n!

di conseguenza basta, per ottenere il numero dei divisori di n!, calcolare il seguente prodotto:

$ \prod_{i=1}^k (\sum_{h=1}^\infty \lfloor n/(p_i)^h\rfloor +1) $ dove $ p_k $ è il più grande numero primo minore di n

Giusto o ho sbagliato in qualche passaggio ???

Fourier
Messaggi: 2
Iscritto il: 05 mar 2010, 15:14
Località: Parma.

Messaggio da Fourier » 06 mar 2010, 17:13

Cosa sta a significare il punto esclamativo dopo n? E poi, come mai nell'open post si dice che i divisori di n non sono minori di n? Come fa a dirlo? E poi quali tipi di divisori? Anche quelli negativi?

trugruo
Messaggi: 192
Iscritto il: 31 ago 2009, 15:04

Messaggio da trugruo » 06 mar 2010, 17:28

Fourier ha scritto:Cosa sta a significare il punto esclamativo dopo n? E poi, come mai nell'open post si dice che i divisori di n non sono minori di n? Come fa a dirlo? E poi quali tipi di divisori? Anche quelli negativi?
http://it.wikipedia.org/wiki/Fattoriale

ah i divisori solo positivi.

Gogo Livorno
Messaggi: 99
Iscritto il: 14 gen 2010, 14:56
Località: Livorno

Messaggio da Gogo Livorno » 07 mar 2010, 22:42

ehm... ok, ma anche ad avere la formula di De Polignac?

cioè, sicuramente l'algoritmo si trova, basta applicare la formula che mi restituisce la fattorizzazione e poi applicare la formula dei divisori di un intero (prodotto di tutti gli esponenti aumentati di 1), ma possiamo arrivarci a una formula chiusa?

Euler
Messaggi: 345
Iscritto il: 20 mar 2010, 22:07
Località: Trento

Messaggio da Euler » 24 mar 2010, 16:03

Secondo me i divisori sono n(n-1)
:D
cogito ergo demonstro

trugruo
Messaggi: 192
Iscritto il: 31 ago 2009, 15:04

Messaggio da trugruo » 24 mar 2010, 16:11

Euler ha scritto:Secondo me i divisori sono n(n-1)
:D
E secondo me questo è falso :D
basta vedere 3! che ha 4 divisori e non 3*2

Euler
Messaggi: 345
Iscritto il: 20 mar 2010, 22:07
Località: Trento

Messaggio da Euler » 27 mar 2010, 17:46

Ho sparato una ca****a
:oops:
cogito ergo demonstro

Rispondi