somme di divisori di fattoriali... problema soft

Numeri interi, razionali, divisibilità, equazioni diofantee, ...
Rispondi
ReKaio
Messaggi: 565
Iscritto il: 01 gen 1970, 01:00
Località: Terra degli Shura (pisa)
Contatta:

somme di divisori di fattoriali... problema soft

Messaggio da ReKaio » 19 mag 2006, 20:21

dimostrare che ogni naturale $ \displaystyle m $, con $ \displaystyle m \le n! $ puo' essere scritto come somma di al piu' $ \displaystyle n $ divisori distinti di $ \displaystyle n! $

(mi e' sembrato carino, su, su)
_k_

Avatar utente
edriv
Messaggi: 1638
Iscritto il: 16 feb 2006, 19:47
Località: Gradisca d'Isonzo
Contatta:

Messaggio da edriv » 19 mag 2006, 21:10

Non ho capito...
$ 16 \le 4! = 24 $, $ 16=1+2+3+4+6 $, che sono 5 divisori di 24 :?:

darkcrystal
Messaggi: 696
Iscritto il: 14 set 2005, 11:39
Località: Chiavari

Messaggio da darkcrystal » 19 mag 2006, 21:20

Ma anche 1+3+4+8... il testo - suppongo - vuol dire "c'è un modo di..." e non "può essere rappresentato solo come..."

Ciao!
"Solo due cose sono infinite: l'universo e la stupidità dell'uomo, e non sono tanto sicuro della prima" - Einstein

Membro dell'EATO

Simo_the_wolf
Moderatore
Messaggi: 1032
Iscritto il: 01 gen 1970, 01:00
Località: Pescara

Messaggio da Simo_the_wolf » 20 mag 2006, 15:02

Veramente simpatico :D peccato le formule di vedano comunque... :P
Induttivamente $ (n-1)! <m <= n! $ scrivo $ m=nk+a $ dove $ a $ è intero nonnegativo minore di n e $ k $ intero nonnegativo. Ovviamente $ k<=(n-1)! $ e quindi è rappesentabile come somma di al più $ n-1 $ divisori di $ (n-1)! $ che moltiplicati per $ n $ saranno divisori di $ n! $. A questi ci aggiungo $ a $ che è anch'esso un divisore di $ n! $.

Manca l'ipotesi induttiva che è per tutti gli interi $ n\leq 2! $ posso esprimerli come somma di $ 2 $ divisori infatti $ 1=1 $ e $ 2=2 $ :D. Come si vede si può anche ridurre il numero di divisori a $ n-1 $

ReKaio
Messaggi: 565
Iscritto il: 01 gen 1970, 01:00
Località: Terra degli Shura (pisa)
Contatta:

Messaggio da ReKaio » 20 mag 2006, 19:56

giusto un dettaglio, per il fatto che siano divisori distinti, usi il fatto che a<n, nella divisione, e tutti gli altri divisori che hai preso, sono moltiplicati per n, invece... (nessuno dei bimbi del mio liceo e' riuscito a risolverlo...)
Ultima modifica di ReKaio il 20 mag 2006, 22:56, modificato 1 volta in totale.
_k_

Simo_the_wolf
Moderatore
Messaggi: 1032
Iscritto il: 01 gen 1970, 01:00
Località: Pescara

Messaggio da Simo_the_wolf » 20 mag 2006, 22:38

ah si ok

Rispondi