funzioncina

Numeri interi, razionali, divisibilità, equazioni diofantee, ...
Rispondi
Avatar utente
frengo
Messaggi: 223
Iscritto il: 01 gen 1970, 01:00

funzioncina

Messaggio da frengo » 05 nov 2005, 13:50

la funzione $ f(x) $ è definita sugli interi positivi ed è tale che

$ f(m)\neq f(n) $ se $ m - n $ è un numero primo.

determinare il minimo numero di valori diffierenti che la funzione può assumere.

EDIT:come promesso, è stato tolto il divieto per i non-liceali....spero che nessuno esageri.

matthewtrager
Messaggi: 132
Iscritto il: 01 gen 1970, 01:00
Località: Pisa

Messaggio da matthewtrager » 20 nov 2005, 17:25

Sperando di aver capito bene, se pongo ad esempio che in generale
$ f(4k)=a, \ f(4k+1)=b, \ f(4k+2)=c $ e $ f(4k+3)=d $
ovviamente con a,b,c,d diversi, questa funzione ha le caratteristiche richiest infatti se f(m)=f(n) allora 4|m-n.
La funzione quindi può assumere quattro valori differenti ed è anche il minimo perchè considerando f(x), f(x+2), f(x+5) e f(x+7) questi devono essere tutti diversi tra loro.
ciao!

Rispondi