Tante cifre uguali a 9

Numeri interi, razionali, divisibilità, equazioni diofantee, ...
Rispondi
Vinci
Messaggi: 147
Iscritto il: 30 gen 2015, 18:38

Tante cifre uguali a 9

Messaggio da Vinci » 04 set 2017, 10:04

Per quali $n$ interi maggiori di $1$ esiste un cubo che termina con $n$ cifre tutte uguali a $9$ (quando è scritto in base $10$)???
Non sono riuscito a farlo, qualche suggerimento?

Avatar utente
Sirio
Messaggi: 196
Iscritto il: 08 set 2016, 22:01

Re: Tante cifre uguali a 9

Messaggio da Sirio » 04 set 2017, 20:43

Tu vuoi tutti gli $n$ tali che $-1$ è residuo cubico modulo $10^n$, ovvero tali che esista un numero il cui cubo è $-1$ modulo $10^n$. Ti basta prendere $10^n-1$ stesso, quindi funziona per tutti gli $n$.
シリオ
$T=\sqrt{\dfrac l g 12\pi}$

Vinci
Messaggi: 147
Iscritto il: 30 gen 2015, 18:38

Re: Tante cifre uguali a 9

Messaggio da Vinci » 04 set 2017, 20:48

Giusto, grazie mille :D

Rispondi

Chi c’è in linea

Visitano il forum: Nessuno e 4 ospiti