OWN - congettura di ignota difficoltà e veridicità solo ipotizzata

Numeri interi, razionali, divisibilità, equazioni diofantee, ...
Rispondi
Enigmatico
Messaggi: 79
Iscritto il: 03 dic 2014, 23:23

OWN - congettura di ignota difficoltà e veridicità solo ipotizzata

Messaggio da Enigmatico » 27 nov 2015, 22:10

Siano dati $n$ primi distinti $p_{i}$ maggiori di $3$; detto $a=\prod_{i=1}^{n}p_{i}$, si dimostri che $2^{a(p_{n+1}-1)}-2^{a(p_{n+1}-2)}+...+2^{2a}-2^{a}+1$ non è una potenza di un primo.

Datemi una mano con questo problema... Mi ci sto spremendo le meningi da oggi pomeriggio senza venirne a capo :oops: :cry:


AlexThirty
Messaggi: 217
Iscritto il: 20 giu 2015, 20:58

Re: OWN - congettura di ignota difficoltà e veridicità solo ipotizzata

Messaggio da AlexThirty » 28 nov 2015, 07:04

Penso il primo successivo all'ultimo usato per calcolare $a$
Un bresciano esportato nel cremonese

-"Dal palazzo di giustizia di Catania o esci con più soldi di prima, o non esci proprio"
-"Baroni uscirebbe con un Win - Win".
Tutti si mettono a ridere, e allora intuisco che non aveva detto "Weed - Win" come avevo capito.

Enigmatico
Messaggi: 79
Iscritto il: 03 dic 2014, 23:23

Re: OWN - congettura di ignota difficoltà e veridicità solo ipotizzata

Messaggio da Enigmatico » 28 nov 2015, 10:52

Esattamente

erFuricksen
Messaggi: 165
Iscritto il: 28 lug 2014, 10:01
Località: Genova, Pisa

Re: OWN - congettura di ignota difficoltà e veridicità solo ipotizzata

Messaggio da erFuricksen » 28 nov 2015, 13:03

Io un'idea ce l'avrei, e vale se consideriamo $p_{n+1}$ un qualunque primo successivo.

Scriviamo innanzi tutto quella tua "cosa" come $${{2^{a p_{n+1}}+1} \over {2^a+1}} =q^k$$.
Si nota facilmente che $$2^{p_{n+1}}+1 \mid {{2^{a p_{n+1}}+1} \over {2^a+1}} =q^k$$
Ma quindi $2^{p_{n+1}}+1=q^{\alpha}$, tuttavia per il lemma del guadagno di un primo $2^{p_{n+1}}+1$ ha almeno due diversi fattori primi a meno che $p_{n+1}=3$ che è impossibile per ipotesi.
$ x^2 + (y - \sqrt {|x|} )^2 = 2 $

Enigmatico
Messaggi: 79
Iscritto il: 03 dic 2014, 23:23

Re: OWN - congettura di ignota difficoltà e veridicità solo ipotizzata

Messaggio da Enigmatico » 28 nov 2015, 20:01

Cosa diavolo è il lemma del guadagno?

erFuricksen
Messaggi: 165
Iscritto il: 28 lug 2014, 10:01
Località: Genova, Pisa

Re: OWN - congettura di ignota difficoltà e veridicità solo ipotizzata

Messaggio da erFuricksen » 29 nov 2015, 11:54

Potresti cogliere l'occasione per aprire un bel topic su questo lemma nel glossario; comunque quello che ho scritto è sbagliato, non è vero che $$2^{p_{n+1}}+1 \mid {{2^{a p_{n+1}}+1} \over {2^a+1}} $$ Ora pubblico la soluzione giusta
$ x^2 + (y - \sqrt {|x|} )^2 = 2 $

erFuricksen
Messaggi: 165
Iscritto il: 28 lug 2014, 10:01
Località: Genova, Pisa

Re: OWN - congettura di ignota difficoltà e veridicità solo ipotizzata

Messaggio da erFuricksen » 29 nov 2015, 13:10

In realtà questa era la mia prima soluzione, ma poi avevo provato a semplificarla, sbagliando :mrgreen:
Anche qui possiamo considerare un qualunque $p_{n+1}$ successivo.
Allora, possiamo scrivere che $${{2^{a p_{n+1}}+1} \over {2^a+1}} =\prod_{d \mid a} \Phi_{2 p_{n+1} d} (2)=q^k$$
Sia perciò $x$ un primo che divide $a$, allora vale che $$\Phi_{2 p_{n+1}} (2) =q^{\alpha} \qquad , \qquad \Phi_{2 p_{n+1} x} (2)=q^{\beta}$$
Tuttavia $$\Phi_{2 p_{n+1}} (2) = {{2^{p_{n+1}}+1} \over 3} \qquad , \qquad \Phi_{2 p_{n+1} x} (2)={{3(2^{p_{n+1}x}+1)} \over {(2^x +1)(2^{p_{n+1}}+1)}}$$
Quindi Posso fare $$\Phi_{2 p_{n+1}} (2) \cdot \Phi_{2 p_{n+1} x} (2) ={{2^{p_{n+1} x}+1} \over {2^x+1}}=q^{\alpha + \beta}$$
Ma per il lemma del guadagno di un primo quest'ultima cosa contiene almeno un fattore primo che non è contenuto in ${2^x+1} \over 3$, quindi non possono essere entrambi potenze di $q$.

Probabilmente c'era una via più diretta per farlo ma avevo paura di perdermi da qualche parte quindi ho fatto il giro lungo (sperando che almeno 'sta volta sia giusto).
$ x^2 + (y - \sqrt {|x|} )^2 = 2 $

Rispondi