LTE funziona davvero?

Numeri interi, razionali, divisibilità, equazioni diofantee, ...
Rispondi
Nadal21
Messaggi: 156
Iscritto il: 12 mar 2015, 15:30

LTE funziona davvero?

Messaggio da Nadal21 » 17 ott 2015, 19:17

per il lemma LTE, se si hanno tre interi positivi $ {x, y, n} $ con $ x>y $ e un primo $ p $ dispari, allora si avrà che

$ v_p(x^n-y^n)= v_p(x-y) + v_p(n) $

Posto $ p=3 $ e $ n=4 $, si avrà che

$ v_3(x^4-y^4)= v_3(x-y) + v_3(4)=v_3(x-y) $

e $ v_3(x-y)\equiv 0 \mod 3 $ se e solo se $ x\equiv y \mod 3 $
Ma, se consideriamo l'espressione $ (x^4-y^4) $ modulo 3, allora si avrà che

$ x^4-y^4\equiv x^2 x^2 - y^2 y^2\equiv 1-1 \equiv 0 \mod 3 $ $ \forall x,y \in \mathbb{N} $.

Cosa c'è di sbagliato nel ragionamento? Perché essi mi conducono a due risultati diversi?

Avatar utente
<enigma>
Messaggi: 876
Iscritto il: 24 set 2009, 16:44

Re: LTE funziona davvero?

Messaggio da <enigma> » 17 ott 2015, 19:28

Hai sbagliato nelle ipotesi di LTE, e se hai mai visto come si dimostra capirai anche dove.
"Quello lì pubblica come un riccio!" (G.)
"Questo puoi mostrarlo o assumendo abc o assumendo GRH+BSD, vedi tu cos'è meno peggio..." (cit.)

Nadal21
Messaggi: 156
Iscritto il: 12 mar 2015, 15:30

Re: LTE funziona davvero?

Messaggio da Nadal21 » 17 ott 2015, 19:46

sì, mi sono appena accorto che come ipotesi $ p $ deve dividere $ x-y $ per applicarlo, non ci avevo pensato :roll: . Grazie!!

darkcrystal
Messaggi: 683
Iscritto il: 14 set 2005, 11:39
Località: Chiavari

Re: LTE funziona davvero?

Messaggio da darkcrystal » 17 ott 2015, 20:36

...aggiungo anche $x^4-y^4 \equiv 0 \pmod 3$ per ogni $x,y \in \mathbb{N}$ mi sembra un po' ottimista, come dimostrano $x=1$ e $y=0$ (o se ti sta antipatico lo 0, $x=4$ e $y=3$)
"Solo due cose sono infinite: l'universo e la stupidità dell'uomo, e non sono tanto sicuro della prima" - Einstein

Membro dell'EATO

Rispondi