[tex]n^2+35n-99[/tex]

Numeri interi, razionali, divisibilità, equazioni diofantee, ...
Rispondi
enrico_s
Messaggi: 36
Iscritto il: 02 lug 2013, 19:49

[tex]n^2+35n-99[/tex]

Messaggio da enrico_s » 02 set 2013, 13:01

Determinare per quali $ n $ interi, $ n^2+35n-99 $ è multiplo di 15.

So che è piuttosto semplice, ma è il primo problema che invento :)

Avatar utente
jordan
Messaggi: 3988
Iscritto il: 02 feb 2007, 21:19
Località: Pescara
Contatta:

Re: [tex]n^2+35n-99[/tex]

Messaggio da jordan » 02 set 2013, 15:31

Ne vanno bene circa $4/15$ :arrow:
The only goal of science is the honor of the human spirit.

enrico_s
Messaggi: 36
Iscritto il: 02 lug 2013, 19:49

Re: [tex]n^2+35n-99[/tex]

Messaggio da enrico_s » 02 set 2013, 16:01

Yes!

LeZ
Messaggi: 284
Iscritto il: 08 mag 2011, 21:28

Re: [tex]n^2+35n-99[/tex]

Messaggio da LeZ » 02 set 2013, 16:04

Io direi. . 3 mod 15, 7 mod 15, 12 mod 15 e 13 mod 15

enrico_s
Messaggi: 36
Iscritto il: 02 lug 2013, 19:49

Re: [tex]n^2+35n-99[/tex]

Messaggio da enrico_s » 02 set 2013, 18:25

Non avevo dubbi che avresti risposto :)

LeZ
Messaggi: 284
Iscritto il: 08 mag 2011, 21:28

Re: [tex]n^2+35n-99[/tex]

Messaggio da LeZ » 02 set 2013, 23:20

Quando invece p(x) è un quadrato perfetto?

enrico_s
Messaggi: 36
Iscritto il: 02 lug 2013, 19:49

Re: [tex]n^2+35n-99[/tex]

Messaggio da enrico_s » 04 set 2013, 10:26

$ n=388 $ oppure $ n=-423 $

Avatar utente
lama luka
Messaggi: 326
Iscritto il: 05 feb 2009, 22:21
Località: cittadino del mondo

Re: [tex]n^2+35n-99[/tex]

Messaggio da lama luka » 04 set 2013, 13:12

LeZ ha scritto:Quando invece p(x) è un quadrato perfetto?
Mai perchè stiamo considerando $p(n)$ :D
Non siamo mica qui a raddrizzare banane col culo !

è Ragionevole!

44 gatti [tex]\equiv 2 \pmod{6}[/tex]

E questo come lo risolvo?-L.Lamanna,G.Grilletti (2009)
Tre anni di quaestio copernicana - C.Càssola, F.M.Antoniali, L.Lamanna (2012)
Cinque anni di Copernicus Math Race - L.Lamanna (2016)

[tex]!n=n! \sum_{k=0}^n \frac{(-1)^k}{k!}[/tex]

LeZ
Messaggi: 284
Iscritto il: 08 mag 2011, 21:28

Re: [tex]n^2+35n-99[/tex]

Messaggio da LeZ » 04 set 2013, 13:49

Infatti hai ragione. Dopo che ho scritto quel post volevo cambiare il testo ma mi scocciaca allora ho pensato che comunque era comprensibile e speravo che la gente come te non intervenisse con pignolerie ahaha

enrico_s
Messaggi: 36
Iscritto il: 02 lug 2013, 19:49

Re: [tex]n^2+35n-99[/tex]

Messaggio da enrico_s » 04 set 2013, 14:28

Lamanna, sempre a fare il precisino :D

Kopernik
Messaggi: 691
Iscritto il: 03 apr 2009, 16:48
Località: Udine

Re: [tex]n^2+35n-99[/tex]

Messaggio da Kopernik » 04 set 2013, 19:54

Un topic popolato quasi esclusivamente da copernicani? Meno male che è intervenuto anche Jordan.
[tex]A \epsilon \iota \quad o \quad \theta \epsilon o \varsigma \quad o \quad \mu \epsilon \gamma \alpha \varsigma \quad \gamma \epsilon \omega \mu \epsilon \tau \rho \epsilon \iota \quad (\Pi \lambda \alpha \tau \omega \nu)[/tex]

EvaristeG
Site Admin
Messaggi: 4770
Iscritto il: 01 gen 1970, 01:00
Località: Roma
Contatta:

Re: [tex]n^2+35n-99[/tex]

Messaggio da EvaristeG » 04 set 2013, 22:04

Popolato quasi esclusivamente da copernicani e privo totalmente di dimostrazioni...

Kopernik
Messaggi: 691
Iscritto il: 03 apr 2009, 16:48
Località: Udine

Re: [tex]n^2+35n-99[/tex]

Messaggio da Kopernik » 05 set 2013, 10:44

Bene, invito i copernicani ad accogliere il rimprovero di EvaristeG: dimostrare!
[tex]A \epsilon \iota \quad o \quad \theta \epsilon o \varsigma \quad o \quad \mu \epsilon \gamma \alpha \varsigma \quad \gamma \epsilon \omega \mu \epsilon \tau \rho \epsilon \iota \quad (\Pi \lambda \alpha \tau \omega \nu)[/tex]

LeZ
Messaggi: 284
Iscritto il: 08 mag 2011, 21:28

Re: [tex]n^2+35n-99[/tex]

Messaggio da LeZ » 05 set 2013, 12:25

Bene, allora concludiamo.
Parte $ 1 $.
Analizziamo modulo $ 3 $ il polinomio.
$ 1 $. Se $ n\equiv 1\pmod 3 $ allora $ 3\mid p(n) $.
$ 2 $. Se $ n\equiv 2\pmod 3 $ allora $ 3\nmid p(n) $.
$ 3 $. Se $ n\equiv 0\pmod 3 $ allora $ 3\mid p(n) $.
Analizziamo modulo $ 5 $ il polinomio.
$ n^2+35n-99\equiv n^2+1 \pmod 5 $. Quali sono i residui quadratici modulo $ 5 $ che vanno bene? $ n\equiv 2\pmod 5 $ e $ n\equiv 3\pmod 5 $ come si può vedere facilmente.
Chiaramente questo esercizio si può fare in moltissimi modi, anche facendo subito modulo $ 15 $, più che altro spero sia istruttivo per i nuovi membri.
Ora quindi senza impostare sistemi, prendiamo i numeri fino a $ 15 $. Consideriamo solo quelli che divisi per $ 5 $ danno resto $ 2 $ o $ 3 $. Quindi $ 2,3,7,8,12,13 $.
Quali tra questi divisi per $ 3 $ danno resto $ 2 $? $ 2 $ e $ 8 $. Quindi vanno bene solo tutti i numeri della forma $ 15k+3,+7,+12,+13 $.

Parte $ 2 $.
Per quali valori di $ n $, $ p(n) $ è un quadrato perfetto? Quindi $ n^2+35n-99=y^2 $.
Se studiamo il delta dell'equazione si secondo grado in $ n $, abbiamo $ \Delta=1225+99\cdot4=1621+4y^2 $.
Il delta deve essere un quadrato perfetto per fornire soluzioni intere. Quindi $ 1621+4y^2=z^2 $. Ovvero $ (z-2y)(z+2y)=1621 $.
$ 1621 $ è primo quindi o $ (z-2y)=\pm1 $ e $ (z+2y)=\pm1621 $ o $ (z-2y)=\pm1621 $ e $ (z+2y)=\pm1 $.
Le coppie $ (z,y) $ sono $ (811,405), (811,-405), (-811,405), (-811,-405) $.
Se le sostituiamo nell'equazione risolvente, abbiamo $ n=\frac{-35\pm{811}}{2} $, quindi $ n=388 $ o $ n=-423 $. Da cui le coppie $ (n,y) (388,\pm405), (-423,\pm405) $. CVD.

enrico_s
Messaggi: 36
Iscritto il: 02 lug 2013, 19:49

Re: [tex]n^2+35n-99[/tex]

Messaggio da enrico_s » 05 set 2013, 14:39

esattamente!
Analizzando subito con modulo 15 invece si ottiene
$ n^2+35n-99\equiv n^2+5n+6 \ \ (mod \ 15) $
quindi noi vogliamo che
$ (n+2)(n+3)\equiv 0 \ \ (mod\ 15) $

abbiamo 4 possibilità:
1) $ n+2\equiv 0\ \ (mod \ 15) $

2) $ n+3\equiv 0\ \ (mod \ 15) $

3) $ n+2\equiv 0\ \ (mod \ 3) $ $ \wedge $ $ n+3\equiv 0\ \ (mod \ 5) $

4) $ n+2\equiv 0\ \ (mod \ 5) $ $ \wedge $ $ n+3\equiv 0\ \ (mod \ 3) $

che hanno come soluzioni quelle riportate da LeZ

Rispondi