Tre numeri

Numeri interi, razionali, divisibilità, equazioni diofantee, ...
Rispondi
Avatar utente
stickman
Messaggi: 7
Iscritto il: 24 dic 2011, 13:17

Tre numeri

Messaggio da stickman » 03 ago 2012, 18:34

Determinare tutte le terne $x,y,z$ tali che :
$\displaystyle \begin {cases} xy \equiv 1 (z) \\ yz \equiv 1 (x) \\ xz \equiv 1 (y) \end {cases}$
Io ho provato ad affrontarlo seza congruenze ma puntualmente sbaglio sempre nello stesso punto, qualcuno può darmi una mano? :oops:

Avatar utente
Drago96
Messaggi: 1145
Iscritto il: 14 mar 2011, 16:57
Località: Provincia di Torino
Contatta:

Re: Tre numeri

Messaggio da Drago96 » 03 ago 2012, 20:46

I tre numeri sono interi? Allora perche' in Algebra e non in TdN?

Se invece non sono interi, cosa vuol dire $\equiv$ ?
Imagination is more important than knowledge. For knowledge is limited, whereas imagination embraces the entire world, stimulating progress, giving birth to evolution (A. Einstein)

xXStephXx
Messaggi: 471
Iscritto il: 22 giu 2011, 21:51

Re: Tre numeri

Messaggio da xXStephXx » 03 ago 2012, 21:02

Forse con qualche riadattamento (da numeri primi ad interi) è questo

Avatar utente
jordan
Messaggi: 3988
Iscritto il: 02 feb 2007, 21:19
Località: Pescara
Contatta:

Re: Tre numeri

Messaggio da jordan » 04 ago 2012, 00:19

Ha anche un po' a che fare con questo

In ogni caso, si potrebbe tranquillamente spostare in TdN.. [Edit: grazie a chiunque l'abbia fatto]
The only goal of science is the honor of the human spirit.

Rispondi