Sonnersequenza

Numeri interi, razionali, divisibilità, equazioni diofantee, ...
Rispondi
Avatar utente
Francutio
Messaggi: 1104
Iscritto il: 17 feb 2008, 08:05
Località: Torino

Sonnersequenza

Messaggio da Francutio » 09 mag 2012, 22:44

Dimostrare che esiste una sequenza infinita di naturali $ {a_n} $ tali che per ogni naturale $ k\ge0 $ la sequenza $ {k+a_n} $ contiene solo un numero finito di primi.


@Sonner: stavo mangiando mentre la spiegavi a Lorenzo e non ho capito come l'avevi fatta ^_^

ndp15
Messaggi: 598
Iscritto il: 18 gen 2007, 19:01

Re: Sonnersequenza

Messaggio da ndp15 » 14 mag 2012, 19:04

Definisco $ \displaystyle a_n={n!} $. Si noti che per ogni $ k $ la sequenza $ a_n+k $ è definitivamente divisibile per $ k $ (basta scegliere $ n\ge k $) da cui la tesi.

dario2994
Messaggi: 1428
Iscritto il: 10 dic 2008, 21:30

Re: Sonnersequenza

Messaggio da dario2994 » 14 mag 2012, 19:13

ndp15 ha scritto:Definisco $ \displaystyle a_n={n!} $. Si noti che per ogni $ k $ la sequenza $ a_n+k $ è definitivamente divisibile per $ k $ (basta scegliere $ n\ge k $) da cui la tesi.
E $k=1$?
...tristezza ed ottimismo... ed ironia...
Io ti racconto lo squallore di una vita vissuta a ore di gente che non sa più far l'amore...
"Allora impara a fare meno il ruffiano. Io non lo faccio mai e guarda come sono ganzo" Tibor Gallai

ndp15
Messaggi: 598
Iscritto il: 18 gen 2007, 19:01

Re: Sonnersequenza

Messaggio da ndp15 » 14 mag 2012, 19:21

dario2994 ha scritto:
ndp15 ha scritto:Definisco $ \displaystyle a_n={n!} $. Si noti che per ogni $ k $ la sequenza $ a_n+k $ è definitivamente divisibile per $ k $ (basta scegliere $ n\ge k $) da cui la tesi.
E $k=1$?
Quella è una banale congettura aperta che lascio come esercizio al lettore ( :roll: )
Ok ci ripenso che forse è meglio.

ndp15
Messaggi: 598
Iscritto il: 18 gen 2007, 19:01

Re: Sonnersequenza

Messaggio da ndp15 » 14 mag 2012, 20:33

ndp15 ha scritto:Ok ci ripenso che forse è meglio.
Bon $ \displaystyle a_n=n!+2 $ mi sembra non abbia più problemi.

dario2994
Messaggi: 1428
Iscritto il: 10 dic 2008, 21:30

Re: Sonnersequenza

Messaggio da dario2994 » 14 mag 2012, 22:48

E se $k$ può essere un intero qualunque?
...tristezza ed ottimismo... ed ironia...
Io ti racconto lo squallore di una vita vissuta a ore di gente che non sa più far l'amore...
"Allora impara a fare meno il ruffiano. Io non lo faccio mai e guarda come sono ganzo" Tibor Gallai

ndp15
Messaggi: 598
Iscritto il: 18 gen 2007, 19:01

Re: Sonnersequenza

Messaggio da ndp15 » 16 mag 2012, 23:22

Visto che nessuno risponde mi permetto ancora di farlo io: $ \displaystyle a_n=(n!)^3 $. Se $ k=0 $ la tesi è ovvia, se $ |k| \neq 1 $ la successione sarà definitivamente divisibile per $ k $, se $ |k|=1 $ ogni elemento della successione si fattorizza in somma o differenza di cubi e, modulo casi piccoli, sarà divisibile per naturali maggiori di $ 1 $.

Rispondi